目录
哈希表
概念
顺序结构及平衡树 中,元素关键码与其存储位置之间没有对应关系,因此查找一个元素时,必须要通过关键码的多次比较。顺序查找的时间复杂度为O(N),平衡树中为树的高度,即O(log2 N),搜索的效率取决于搜索过程中元素的比较次数。
因此我们就会想,有没有一种理想的方法,可以不经过任何比较,一次从表中得到要搜索的元素 。那么就可以构造某种函数,使该元素的存储位置与关键码之间存在映射关系,(即key->通过某种方法->一次定位到key的位置),那么这种通过函数的方式就很容易找到元素
当向该结构中:
插入元素
根据插入元素的关键码,通过函数计算出该元素的存储位置并进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当作元素的存储位置,在结构中按此位置比较,若关键码相等,则搜索成功
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(或称为散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity;capacity为存储元素底层空间的总大小
存储情况如下:
**用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快。**而此时又衍生出来了一个问题,万一两个关键码通过函数计算的存放位置相同,该怎么办?这就涉及到了冲突。
冲突-概念
对于两个数据元素的关键字ki和kj(i!=j),有ki != kj,但有Hash(ki) == Hash(kj),即:不同关键字通过哈希函数计算出相同的哈希地址,这种现象称为哈希冲突或哈希冲撞 。
把具有不同关键码而具有相同哈希地址的数据元素称为"同义词"。
冲突-避免
首先,我们明确一点,由于哈希表底层数组的容量往往是小于实际要存储的关键字数量的,这就导致了一个问题,冲突发生是必然的,但我们能做到的是尽可能降低冲突率。
冲突-避免-哈希函数设计
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。哈希设计原则:
1.哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。
2.哈希函数计算出来的地址能均匀分布在整个空间中
3.哈希函数应该比较简单
常见哈希函数(常用)
1.直接定制法:取关键字的某个线性函数为散列地址:Hash(Key) = A*Key + B。优点:简单,均匀。缺点:需要事先知道关键字的分布情况。使用场景:适合查找比较小且连续的情况。
2.除留余数法:设散列表允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p
作为除数,按照哈希函数: Hash(key) = key% p(p<=m), 将关键码转换成哈希地址
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突
冲突-避免-负载因子的调节
散列表的载荷因子定义为 : a = 填入表中元素个数 / 散列表的长度
注:由于散列表长度是定值,所以填入表中的元素个数越多,产生冲突的可能性就越大。
对于开放定址法,荷载因子是特别重要的因素,应该严格限制在0.7-0.8以下,超过0.8,查表时CPU缓存不命中按照指数直线上升。因此,一些采用开放定址法的hash库,如Java系统库限制了荷载因子为0.75,如果超过荷载因子的话将对散列表进行扩容。
负载因子和冲突率的关系粗略演示
所以当冲突率达到一个无法忍受的程度时,我们需要通过降低负载因子来降低冲突率。
已知哈希表中已有关键字个数是不可变的,那么我们只能调整哈希表中数组的大小。
解决哈希冲突的两种常见方法有:闭散列和开散列。
冲突-解决-闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置的下一个"空位置中去"。那么如何寻找空位置呢?
1.线性探测
比如下面的场景:现在需要插入元素44,先通过哈希函数计算哈希地址,下标为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入
通过哈希函数获取待插入元素在哈希表中的位置
如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
采用闭散列处理哈希冲突时不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其它元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能有影响。因此线性探测采用伪删除法来删除一个元素
2.二次探测
线性探测的缺陷是产生的数据堆积在一块(导致不能均匀分布在空间中),这与其找下一个空位置有关系,因为找空位置的方式就是挨个往后逐个去找 ,因此二次探测为了避免该问题,找下一个空位置的方法为:Hi = (H0 + i ^ 2) % m.H0为应该放置的位置,m为冲突次数,m为表的大小。
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
冲突-解决-开散列
开散列法又叫链地址法(开链法,即数组加链表),首先对关键码集合用散列函数计算地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过单链表连接起来,各链表的头节点存储在哈希表中。
方法如图所示:
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
开散列,可以认为是把一个大集合中的搜索问题转化为在小集合中搜索了。
哈希桶的实现
下面是基于key-value模型写的哈希桶部分方法的代码:
java
//key-value模型
public class HashBucket {
private static class Node {
private int key;
private int value;
Node next;
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
//用数组表示哈希表
private Node[] array;
//当前哈希表元素个数
private int size;
//定义荷载因子
private static final double LOAD_FACTOR = 0.75;
public int put(int key, int value) {
//根据哈希函数确定存放的下标
int index = key % array.length;
//在链表中查找key所在的结点
//如果找到了,更新
//所有节点都不是key,插入一个新的结点
for (Node cur = array[index]; cur != null; cur = cur.next) {
if(key == cur.key) {
int oldValue = cur.value;
cur.value = value;
//返回更新前key对应的value
return oldValue;
}
}
//链表遍历完成,没有找到这个key
Node node = new Node(key, value);
node.next = array[index];
array[index] = node;
size++;
if(loadFactor() >= LOAD_FACTOR) {
resize();
}
return -1;
}
private void resize() {
//创建一个扩容数组,并将原来数组中的元素按照新的规则放入新的数组当中
Node[] newArray = new Node[array.length * 2];
//遍历原来的数组
for(int i = 0; i < array.length; i++) {
//遍历一个数组中的链表
Node cur = array[i];
while(cur != null) {
//利用tmp记录cur的位置
Node tmp = cur.next;
//计算元素在新数组中的位置
int newIndex = cur.key % newArray.length;
//头插法
cur.next = newArray[newIndex];
newArray[newIndex] = cur;
//回溯cur的位置
cur = tmp;
}
}
//将新数组赋值给原数组
array = newArray;
}
//计算当前荷载因子的大小
private double loadFactor() {
return size * 1.0 / array.length;
}
public HashBucket() {
array = new Node[8];
size = 0;
}
//get方法
public int get(int key) {
int index = key % array.length;
Node head = array[index];
Node cur = head;
while(cur != null) {
if(key == cur.key) {
return cur.value;
}
cur = cur.next;
}
//未找到,则返回-1
return -1;
}
}
性能分析
虽然哈希表一直在和冲突做斗争,但在实际使用过程中,我们认为哈希表的冲突率是不高的,冲突个数是可控的,也就是每个桶中的链表长度是一个常数,所以,通常意义下,我们认为哈希表的插入/删除/查找的时间复杂度为O(n).
java和类集的关系
1.HashMap和HashSet即java中利用哈希表实现的Map和Set
2.java中使用的是哈希桶的方式解决冲突的
3.java会在冲突链表长度大于一定阈值后,将链表转变为二叉搜索树(红黑树)
4.java中计算哈希值实际上是调用的类的hashCode方法,进行key的相等性比较是调用key的equals方法。所以如果要用自定义类作为HashMap的key或者HashSet的值,必须覆写hashCode和equals方法,而且要做到equals相等的对象,hashCode一定是一致的