CUDA编程入门系列(十一)CUDA程序优化技巧

优化原则:最大化并行执行

探索并行化:

优化线程块的规模

我们在设计CUDA程序的时候,要对线程块的个数进行考虑。因为GPU中流处理器SM的数量是相对固定的,所以我们应该尽量的将多个block放到同一个SM当中(至少保证每个SM中都有一个块),使得SM时刻处于活跃状态。但如果块所需资源过多,那么一个SM能够同时处理的块就比较少。

优化线程块的大小

因为SM是以warp为单位的,那么我们就要尽量的保证块的大小是32的倍数,使得所有的warp中所有的线程都处于活跃状态。如果块上的线程多的话,就可以隐藏一些内存的延迟。但是,如果一个块上的线程越多,每个线程拥有的寄存器大小就越小。

最大化Occupancy

基本策略

极小化CPU和GPU之间的数据传输

极大化使用共享内存

优化内存使用模式

全局内存:对齐与合并访问

共享内存:防止bank conflict

优化优先级

指令优化:原则

结论

相关推荐
咚咚王者10 分钟前
人工智能之数据分析 numpy:第五章 索引与切片
人工智能·数据分析·numpy
yy_xzz21 分钟前
【OpenCV + VS】C++实现动态下雪特效
c++·人工智能·opencv
木头左35 分钟前
自适应门控循环单元GRU-O与标准LSTM在量化交易策略中的性能对比实验
深度学习·gru·lstm
扬道财经41 分钟前
从百度分析师到GEO理论奠基人,罗小军探索AI搜索营销新路径
人工智能·百度·dubbo
哥布林学者1 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(三)多值预测与多分类
深度学习·ai
xuehaisj1 小时前
菠萝蜜果实目标检测_yolo11-C3k2-ConvFormer改进
人工智能·目标检测·目标跟踪
月下倩影时1 小时前
视觉学习篇——模型推理部署:从“炼丹”到“上桌”
人工智能·深度学习·学习
夕小瑶1 小时前
从无形IP到AI万象,安谋科技Arm China“周易”X3 NPU 发布!
人工智能·科技·tcp/ip
陈天伟教授1 小时前
人工智能技术-人工智能与科学-03 预测分子性能
人工智能
【建模先锋】1 小时前
基于密集连接的DenseNet故障诊断模型:实现高鲁棒性的深度故障诊断
人工智能·cnn·信号处理·故障诊断·轴承故障诊断·西储大学数据集