CUDA编程入门系列(十一)CUDA程序优化技巧

优化原则:最大化并行执行

探索并行化:

优化线程块的规模

我们在设计CUDA程序的时候,要对线程块的个数进行考虑。因为GPU中流处理器SM的数量是相对固定的,所以我们应该尽量的将多个block放到同一个SM当中(至少保证每个SM中都有一个块),使得SM时刻处于活跃状态。但如果块所需资源过多,那么一个SM能够同时处理的块就比较少。

优化线程块的大小

因为SM是以warp为单位的,那么我们就要尽量的保证块的大小是32的倍数,使得所有的warp中所有的线程都处于活跃状态。如果块上的线程多的话,就可以隐藏一些内存的延迟。但是,如果一个块上的线程越多,每个线程拥有的寄存器大小就越小。

最大化Occupancy

基本策略

极小化CPU和GPU之间的数据传输

极大化使用共享内存

优化内存使用模式

全局内存:对齐与合并访问

共享内存:防止bank conflict

优化优先级

指令优化:原则

结论

相关推荐
慎独41312 分钟前
家家有平台:Web3.0绿色积分引领消费新纪元
大数据·人工智能·物联网
火云牌神16 分钟前
如何选择FAISS的索引类型
人工智能·faiss
Gavin在路上21 分钟前
SpringAIAlibaba之高级特性与实战场景全解析(5)
人工智能
会挠头但不秃30 分钟前
深度学习(4)卷积神经网络
人工智能·神经网络·cnn
百***243742 分钟前
GPT-5.2 技术升级与极速接入指南:从版本迭代到落地实践
大数据·人工智能·gpt
L.fountain1 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
摘星编程1 小时前
Ascend C编程语言详解:打造高效AI算子的利器
c语言·开发语言·人工智能
DisonTangor2 小时前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
hxxjxw2 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python