pytorch nn.Embedding 读取gensim训练好的词/字向量(有例子)

最近在跑深度学习模型,发现Embedding随机性太强导致模型结果有出入,因此考虑固定初始随机向量,既提前训练好词/字向量,不多说上代码!!

1、利用gensim训练字向量(词向量自行修改)

python 复制代码
# 得到每一行的数据 []
datas = open('data/word.txt', 'r', encoding='gbk').read().split("\n")
# 得到一行的单个字 [[],...,[]]
word_datas = [[i for i in data if i != " "] for data in datas] 
model = Word2Vec(
    word_datas,  # 需要训练的文本
    vector_size=10,   # 词向量的维度
    window=2,  # 句子中当前单词和预测单词之间的最大距离
    min_count=1,  # 忽略总频率低于此的所有单词 出现的频率小于 			min_count 不用作词向量
    workers=8,  # 使用这些工作线程来训练模型(使用多核机器进行更快的训练)
    sg=0,  # 训练方法 1:skip-gram 0;CBOW。
    epochs=10  # 语料库上的迭代次数
	)

2、保存模型或者字向量

python 复制代码
#字向量保存
model.wv.save_word2vec_format('word_data.vector',   # 保存路径
                              binary=False  # 如果为 True,则数据将以二进制 word2vec 格式保存,否则将以纯文本格式保存
                              )
#模型保存
model.save('word.model')

3、nn.Embedding读取gensim模型

python 复制代码
model = gensim.models.Word2Vec.load('./word.model')
weights = torch.FloatTensor(model.wv.vectors)
embedding = nn.Embedding.from_pretrained(weights)
embedding.requires_grad = False

这里懒了,拷贝别人的图,debug就可以看看,简单理解下就是有X个字,就有X行,然后每个字用Y个数字表示,就是Y列,上图X=4799,Y=10。

*也许看了上面你依然会一脸懵(别着急,下面给你举个例子)

4、案例

python 复制代码
import gensim
import torch
import torch.nn as nn

model = gensim.models.Word2Vec.load('./word.model')
weights = torch.FloatTensor(model.wv.vectors)

embedding = nn.Embedding.from_pretrained(weights)
embedding.requires_grad = False #训练时候不训练向量

query = '天氣'
query_id = torch.tensor(model.wv.vocab['天氣'].index)

#下面只是查询,具体的根据你自己的训练即可
gensim_vector = torch.tensor(model[query])
embedding_vector = embedding(query_id)

print(gensim_vector==embedding_vector)

#首先將 Gensim 的預訓練模型讀取進來,並將其向量轉換成 PyTorch 所需要的資料格式 Tensor,當作 nn.Embedding() 的初始值。
#這裡有個小細節:如果並不打算在模型訓練過程中一併訓練 nn.Emedding(),要記得將其設定為 requires_grad = False。
相关推荐
谷粒.1 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
CareyWYR6 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信7 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20097 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟7 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播8 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训8 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹8 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55189 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora9 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习