《论文阅读28》OGMM

一、论文

  • 研究领域: 点云配准 | 有监督 部分重叠
  • 论文:Overlap-guided Gaussian Mixture Models for Point Cloud Registration
  • WACV 2023

二、概述

  • 概率3D点云配准方法在克服噪声、异常值和密度变化方面表现出有竞争力的性能 。本文将点云对的配准问题转化为两个高斯混合物的配准问题,通过最小化两个相应混合物之间的统计差异度量
  • baseline: DeepGMR
  • backbone: DGCNN特征提取器
  • OGMM可以更好地检测重叠区域,这要归功于新引入的重叠分数(借鉴2021 CVPR Predator)

三、详述

点云配准方法可以大致分为无对应基于对应[28]。

  • 无对应配准方法旨在最小化从两个输入点云提取的全局特征之间的差异[28,18,1]。这些全局特征通常基于点云的所有点来计算,使得无对应性方法不足以处理具有部分重叠的场景,例如在真实的世界中捕获的场景[51,6]。
  • 基于对应关系的配准方法依赖于两个输入点云之间的点级对应关系[10,39,2]。尽管显示出有希望的结果,但这些方法遭受两个主要挑战:i)由于传感器噪声和密度变化,真实世界的点云不包含精确的点级对应关系[17,49,36]; ii)对应搜索空间的大小随着两个点云的点的数量二次增加[49]。

找到点对点对应的另一种方法是通过概率模型使用分布到分布的匹配[17,49]。这些概率配准技术比它们的点对点对应物显示出对噪声和密度变化的更大鲁棒性 [36],然而,它们通常要求它们的输入共享相同的分布参数(例如,高斯混合模型)。因此,它们只能处理完全到完全 [49]或部分到完全 [36]的点云配准设置。在现实世界应用中典型的部分到部分设置可能具有不相交的分布参数。因此,当在这些设置中使用最先进的方法时,极有可能表现不佳。

完全到完全:

部分到完全:

部分到部分:

相关推荐
询问QQ:4877392786 小时前
三菱Q系列PLC大型自动化生产线程序案例分享
论文阅读
檐下翻书17312 小时前
集团组织架构图在线设计 多部门协作编辑工具
大数据·论文阅读·人工智能·物联网·架构·流程图·论文笔记
Charlene Fung13 小时前
如何使用 Markdown 生成带参考文献的 PDF
论文阅读·pdf·markdown
张较瘦_15 小时前
[论文阅读] AI | 告别“被动救火”:POLARIS让系统学会“主动预判+自我进化”
论文阅读·人工智能
勤劳的进取家2 天前
论文阅读:农业喷雾无人机避障技术综述
论文阅读·嵌入式硬件·神经网络·计算机视觉·无人机
明明真系叻2 天前
2025.12.6 论文阅读
论文阅读
aaaa_a1332 天前
Attention is all you need——论文笔记
论文阅读
张较瘦_2 天前
[论文阅读] AI + 软件工程 | GenAI 赋能自适应系统:从技术突破到研究蓝图,一文看懂核心价值与挑战
论文阅读·人工智能·软件工程
张较瘦_2 天前
[论文阅读] 软件工程 - 供应链 | 从Log4Shell到Go组件漏洞:一篇文看懂开源依赖安全的核心痛点与解决方案
论文阅读·golang·开源
有Li3 天前
一种交互式可解释人工智能方法,用于改进数字细胞病理学癌症亚型分类中的人机协作|文献速递-文献分享
大数据·论文阅读·人工智能·文献