《论文阅读28》OGMM

一、论文

  • 研究领域: 点云配准 | 有监督 部分重叠
  • 论文:Overlap-guided Gaussian Mixture Models for Point Cloud Registration
  • WACV 2023

二、概述

  • 概率3D点云配准方法在克服噪声、异常值和密度变化方面表现出有竞争力的性能 。本文将点云对的配准问题转化为两个高斯混合物的配准问题,通过最小化两个相应混合物之间的统计差异度量
  • baseline: DeepGMR
  • backbone: DGCNN特征提取器
  • OGMM可以更好地检测重叠区域,这要归功于新引入的重叠分数(借鉴2021 CVPR Predator)

三、详述

点云配准方法可以大致分为无对应基于对应[28]。

  • 无对应配准方法旨在最小化从两个输入点云提取的全局特征之间的差异[28,18,1]。这些全局特征通常基于点云的所有点来计算,使得无对应性方法不足以处理具有部分重叠的场景,例如在真实的世界中捕获的场景[51,6]。
  • 基于对应关系的配准方法依赖于两个输入点云之间的点级对应关系[10,39,2]。尽管显示出有希望的结果,但这些方法遭受两个主要挑战:i)由于传感器噪声和密度变化,真实世界的点云不包含精确的点级对应关系[17,49,36]; ii)对应搜索空间的大小随着两个点云的点的数量二次增加[49]。

找到点对点对应的另一种方法是通过概率模型使用分布到分布的匹配[17,49]。这些概率配准技术比它们的点对点对应物显示出对噪声和密度变化的更大鲁棒性 [36],然而,它们通常要求它们的输入共享相同的分布参数(例如,高斯混合模型)。因此,它们只能处理完全到完全 [49]或部分到完全 [36]的点云配准设置。在现实世界应用中典型的部分到部分设置可能具有不相交的分布参数。因此,当在这些设置中使用最先进的方法时,极有可能表现不佳。

完全到完全:

部分到完全:

部分到部分:

相关推荐
张较瘦_18 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
CV-杨帆1 天前
论文阅读:arxiv 2025 OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
论文阅读
七元权1 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_111 天前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
噜~噜~噜~2 天前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_2 天前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_2 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola3 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_4 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙5 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程