《论文阅读28》OGMM

一、论文

  • 研究领域: 点云配准 | 有监督 部分重叠
  • 论文:Overlap-guided Gaussian Mixture Models for Point Cloud Registration
  • WACV 2023

二、概述

  • 概率3D点云配准方法在克服噪声、异常值和密度变化方面表现出有竞争力的性能 。本文将点云对的配准问题转化为两个高斯混合物的配准问题,通过最小化两个相应混合物之间的统计差异度量
  • baseline: DeepGMR
  • backbone: DGCNN特征提取器
  • OGMM可以更好地检测重叠区域,这要归功于新引入的重叠分数(借鉴2021 CVPR Predator)

三、详述

点云配准方法可以大致分为无对应基于对应[28]。

  • 无对应配准方法旨在最小化从两个输入点云提取的全局特征之间的差异[28,18,1]。这些全局特征通常基于点云的所有点来计算,使得无对应性方法不足以处理具有部分重叠的场景,例如在真实的世界中捕获的场景[51,6]。
  • 基于对应关系的配准方法依赖于两个输入点云之间的点级对应关系[10,39,2]。尽管显示出有希望的结果,但这些方法遭受两个主要挑战:i)由于传感器噪声和密度变化,真实世界的点云不包含精确的点级对应关系[17,49,36]; ii)对应搜索空间的大小随着两个点云的点的数量二次增加[49]。

找到点对点对应的另一种方法是通过概率模型使用分布到分布的匹配[17,49]。这些概率配准技术比它们的点对点对应物显示出对噪声和密度变化的更大鲁棒性 [36],然而,它们通常要求它们的输入共享相同的分布参数(例如,高斯混合模型)。因此,它们只能处理完全到完全 [49]或部分到完全 [36]的点云配准设置。在现实世界应用中典型的部分到部分设置可能具有不相交的分布参数。因此,当在这些设置中使用最先进的方法时,极有可能表现不佳。

完全到完全:

部分到完全:

部分到部分:

相关推荐
youcans_1 天前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
m0_650108241 天前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
胆怯的ai萌新1 天前
论文阅读《Audit Games with Multiple Defender Resources》
论文阅读
墨绿色的摆渡人1 天前
论文笔记(一百零六)RynnVLA-002: A Unified Vision-Language-Action and World Model
论文阅读
提娜米苏1 天前
[论文笔记] ASR is all you need: Cross-modal distillation for lip reading (2020)
论文阅读·深度学习·计算机视觉·语音识别·知识蒸馏·唇语识别
小殊小殊1 天前
重磅!DeepSeek发布V3.2系列模型!
论文阅读·人工智能·算法
youcans_2 天前
【youcans论文精读】U-Net:用于医学图像分割的 U型卷积神经网络
论文阅读·人工智能·计算机视觉·图像分割·unet
youcans_2 天前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
DuHz2 天前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
墨绿色的摆渡人2 天前
论文笔记(一百零五)A review of learning-based dynamics models for robotic manipulation
论文阅读