基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码

基于人工蜂鸟优化的BP神经网络(分类应用) - 附代码

文章目录

摘要:本文主要介绍如何用人工蜂鸟算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1 特征2 特征3 类别
单组iris数据 5.3 2.1 1.2 1

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组) 测试集(组) 总数据(组)
105 45 150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.人工蜂鸟优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:


图1.神经网络结构

神经网络参数如下:

matlab 复制代码
%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 人工蜂鸟算法应用

人工蜂鸟算法原理请参考:https://blog.csdn.net/u011835903/article/details/128386612

人工蜂鸟算法的参数设置为:

matlab 复制代码
popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)

其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从人工蜂鸟算法的收敛曲线可以看到,整体误差是不断下降的,说明人工蜂鸟算法起到了优化的作用:


5.Matlab代码

相关推荐
FL16238631292 小时前
荔枝成熟度分割数据集labelme格式2263张3类别
人工智能·深度学习
一点.点2 小时前
DRIVEGPT4: 通过大语言模型实现可解释的端到端自动驾驶
人工智能·语言模型·自然语言处理·自动驾驶
天涯海风3 小时前
介绍一下什么是 AI、 AGI、 ASI
人工智能·agi
zzc9213 小时前
Tensorflow 2.X Debug中的Tensor.numpy问题 @tf.function
人工智能·tensorflow·numpy
我是你们的星光3 小时前
基于深度学习的高效图像失真校正框架总结
人工智能·深度学习·计算机视觉·3d
追逐☞3 小时前
机器学习(11)——xgboost
人工智能·机器学习
智驱力人工智能4 小时前
AI移动监测:仓储环境安全的“全天候守护者”
人工智能·算法·安全·边缘计算·行为识别·移动监测·动物检测
斯普信专业组5 小时前
Apidog MCP服务器,连接API规范和AI编码助手的桥梁
运维·服务器·人工智能
小技工丨5 小时前
LLaMA-Factory:了解webUI参数
人工智能·llm·llama·llama-factory
whaosoft-1435 小时前
w~自动驾驶~合集3
人工智能