2 用TensorFlow构建一个简单的神经网络

上一篇:1 如何入门TensorFlow-CSDN博客

1、环境搭建

后续介绍的相关代码都是在pycharm运行,pycharm安装略。

打开pycharm,创建一个新的项目用于tensorflow编码练习,在Terminal输入命令:

依赖最新版本的pip

复制代码
pip install --upgrade pip

安装tensorflow

复制代码
pip install tensorflow

其他依赖项,可以在后续编码用到时根据系统提示信息再安装。


2、传统编程和机器学习的区别

用一个简单的例子介绍,比如我们写一个计算西瓜价格的程序,计算公式是:

费用=单价*重量+包装费

给出西瓜单价是1.2元/斤,包装费(可降解塑料袋)固定为0.5元

则计算公式为 费用=1.2元/斤*重量+0.5元

2.1 Python程序实现价格计算

先用Python程序实现,直接将费用计算公式写在程序里:

python 复制代码
def watermelon_total_cost(weight):
    # 费用计算公式
    total_cost = 1.2 * weight + 0.5
    return total_cost


watermelon_weight = float(input('请输入西瓜的重量:'))
cost = watermelon_total_cost(watermelon_weight)
print('费用是:%.2f' % cost)

如果输入10斤时,则程序输出费用:

2.2 机器学习实现价格预测

如果没有在程序里写死费用的计算公式,计算机如何通过训练得到这一规则?

先给出一些重量和对应费用的数据,让机器通过训练这些数据找到规则:

weight=[1, 3, 4, 5, 6, 8]

total_cost=[1.7, 4.1, 5.3, 6.5, 7.7, 10.1]

先上代码,不用急着去了解每行代码的含义,后面章节会详细解释。

python 复制代码
import numpy as np
import tensorflow as tf

# 西瓜的重量
weight = np.array([1, 3, 4, 5, 6, 8], dtype=float)

# 对应的费用
total_cost = np.array([1.7, 4.1, 5.3, 6.5, 7.7, 10.1], dtype=float)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, input_shape=[1])
])

model.compile(loss=tf.losses.mean_squared_error, optimizer='SGD')

history = model.fit(weight, total_cost, epochs=500, verbose=False)

# 训练完成后,预测10斤西瓜的总费用
print(model.predict([10]))

程序运行结果:

预测结果是12.521......,和准确值12.5非常接近!

由上面可以看出之前我们写的程序是需要事先定义好程序的规则,才能得到答案。而机器学习是给出数据和答案,让机器通过训练得到它们之间的数学关系。

相关推荐
落羽凉笙12 分钟前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light6012 分钟前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升17 分钟前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
天远Date Lab22 分钟前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
natide25 分钟前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农32 分钟前
码农的妇产科实习记录
android·java·人工智能
TechubNews41 分钟前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
哈里谢顿43 分钟前
Python异常链:谁才是罪魁祸首?一探"The above exception"的时间顺序
python
脑极体1 小时前
机器人的罪与罚
人工智能·机器人
三不原则1 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes