2 用TensorFlow构建一个简单的神经网络

上一篇:1 如何入门TensorFlow-CSDN博客

1、环境搭建

后续介绍的相关代码都是在pycharm运行,pycharm安装略。

打开pycharm,创建一个新的项目用于tensorflow编码练习,在Terminal输入命令:

依赖最新版本的pip

复制代码
pip install --upgrade pip

安装tensorflow

复制代码
pip install tensorflow

其他依赖项,可以在后续编码用到时根据系统提示信息再安装。


2、传统编程和机器学习的区别

用一个简单的例子介绍,比如我们写一个计算西瓜价格的程序,计算公式是:

费用=单价*重量+包装费

给出西瓜单价是1.2元/斤,包装费(可降解塑料袋)固定为0.5元

则计算公式为 费用=1.2元/斤*重量+0.5元

2.1 Python程序实现价格计算

先用Python程序实现,直接将费用计算公式写在程序里:

python 复制代码
def watermelon_total_cost(weight):
    # 费用计算公式
    total_cost = 1.2 * weight + 0.5
    return total_cost


watermelon_weight = float(input('请输入西瓜的重量:'))
cost = watermelon_total_cost(watermelon_weight)
print('费用是:%.2f' % cost)

如果输入10斤时,则程序输出费用:

2.2 机器学习实现价格预测

如果没有在程序里写死费用的计算公式,计算机如何通过训练得到这一规则?

先给出一些重量和对应费用的数据,让机器通过训练这些数据找到规则:

weight=[1, 3, 4, 5, 6, 8]

total_cost=[1.7, 4.1, 5.3, 6.5, 7.7, 10.1]

先上代码,不用急着去了解每行代码的含义,后面章节会详细解释。

python 复制代码
import numpy as np
import tensorflow as tf

# 西瓜的重量
weight = np.array([1, 3, 4, 5, 6, 8], dtype=float)

# 对应的费用
total_cost = np.array([1.7, 4.1, 5.3, 6.5, 7.7, 10.1], dtype=float)

model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, input_shape=[1])
])

model.compile(loss=tf.losses.mean_squared_error, optimizer='SGD')

history = model.fit(weight, total_cost, epochs=500, verbose=False)

# 训练完成后,预测10斤西瓜的总费用
print(model.predict([10]))

程序运行结果:

预测结果是12.521......,和准确值12.5非常接近!

由上面可以看出之前我们写的程序是需要事先定义好程序的规则,才能得到答案。而机器学习是给出数据和答案,让机器通过训练得到它们之间的数学关系。

相关推荐
乔江seven3 分钟前
【Flask 进阶】3 从同步到异步:基于 Redis 任务队列解决 API 高并发与长耗时任务阻塞
redis·python·flask
JicasdC123asd7 分钟前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
pchaoda16 分钟前
基本面因子计算入门
python·matplotlib·量化
Wpa.wk21 分钟前
接口自动化测试 - 请求构造和响应断言 -Rest-assure
开发语言·python·测试工具·接口自动化
星爷AG I22 分钟前
9-28 视觉工作记忆(AGI基础理论)
人工智能·计算机视觉·agi
陈天伟教授28 分钟前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
岱宗夫up32 分钟前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
程序猿阿伟33 分钟前
《游戏AI训练模拟环境:高保真可加速构建实战指南》
人工智能·游戏
狂奔蜗牛飙车33 分钟前
Python学习之路-循环语句学习详解
python·学习·python学习·#python学习笔记·循环语句详解
花月mmc35 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理