Pytorch从零开始实战07

Pytorch从零开始实战------咖啡豆识别

本系列来源于365天深度学习训练营

原作者K同学

文章目录

环境准备

本文基于Jupyter notebook,使用Python3.8,Pytorch2.0.1+cu118,torchvision0.15.2,需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是手写VGG,并且测试多GPU。

第一步,导入常用包

python 复制代码
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import random
from time import time
import numpy as np
import pandas as pd
import datetime
import gc
import os
import copy
os.environ['KMP_DUPLICATE_LIB_OK']='True'  # 用于避免jupyter环境突然关闭
torch.backends.cudnn.benchmark=True  # 用于加速GPU运算的代码

设置随机数种子

python 复制代码
torch.manual_seed(428)
torch.cuda.manual_seed(428)
torch.cuda.manual_seed_all(428)
random.seed(428)
np.random.seed(428)

创建设备对象,并且查看GPU数量

python 复制代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device, torch.cuda.device_count()

数据集

本次使用的数据集是咖啡豆图片,它分为四个类别,Dark、Green、Light、Medium,一共有1200张图片,不同的类别存放在不同的文件夹中,文件夹名是类别名。

使用pathlib查看类别

python 复制代码
import pathlib
data_dir = './data/beans'
data_dir = pathlib.Path(data_dir) # 转成pathlib.Path对象
data_paths = list(data_dir.glob('*')) 
classNames = [str(path).split("/")[2] for path in data_paths]
classNames # ['Dark', 'Green', 'Medium', 'Light']

使用transforms对数据集进行统一处理,并且根据文件夹名映射对应标签

python 复制代码
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化
])

total_data = datasets.ImageFolder("./data/beans/", transform=train_transforms)
total_data.class_to_idx # {'Dark': 0, 'Green': 1, 'Light': 2, 'Medium': 3}

随机查看5张图片

python 复制代码
def plotsample(data):
    fig, axs = plt.subplots(1, 5, figsize=(10, 10)) #建立子图
    for i in range(5):
        num = random.randint(0, len(data) - 1) #首先选取随机数,随机选取五次
        #抽取数据中对应的图像对象,make_grid函数可将任意格式的图像的通道数升为3,而不改变图像原始的数据
        #而展示图像用的imshow函数最常见的输入格式也是3通道
        npimg = torchvision.utils.make_grid(data[num][0]).numpy()
        nplabel = data[num][1] #提取标签 
        #将图像由(3, weight, height)转化为(weight, height, 3),并放入imshow函数中读取
        axs[i].imshow(np.transpose(npimg, (1, 2, 0))) 
        axs[i].set_title(nplabel) #给每个子图加上标签
        axs[i].axis("off") #消除每个子图的坐标轴

plotsample(total_data)

根据8比2划分数据集和测试集,并且利用DataLoader划分批次和随机打乱

python 复制代码
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_ds, test_ds = torch.utils.data.random_split(total_data, [train_size, test_size])

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                      )
test_dl = torch.utils.data.DataLoader(test_ds,
                                        batch_size=batch_size,
                                        shuffle=True,
                                     )

len(train_dl.dataset), len(test_dl.dataset) # (960, 240)

模型选择

本次实验使用VGG16,模型如下

python 复制代码
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.block1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )

        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )

        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )

        self.block4 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )

        self.block5 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )

        self.fc = nn.Sequential(
            nn.Linear(7 * 7 * 512, 4096),
            nn.ReLU(),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Linear(4096, len(classNames))
        )
        
    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = x.view(-1, 7 * 7 * 512)
        x = self.fc(x)
        return x

使用summary查看模型结构,并且将模型转成多GPU并行运算的模型

python 复制代码
from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)
if torch.cuda.device_count() > 1:  # 检查电脑是否有多块GPU
    print(f"Let's use {torch.cuda.device_count()} GPUs!")
    model = nn.DataParallel(model)  # 将模型对象转变为多GPU并行运算的模型

summary(model, input_size=(3, 224, 224))

训练

定义训练函数

python 复制代码
def train(dataloader, model, loss_fn, opt):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        pred = model(X)
        loss = loss_fn(pred, y)

        opt.zero_grad()
        loss.backward()
        opt.step()

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    return train_acc, train_loss

定义测试函数

python 复制代码
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_acc, test_loss = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
    
            test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss += loss.item()

    test_acc /= size
    test_loss /= num_batches
    return test_acc, test_loss

定义损失函数、优化算法、学习率,本次使用的是Adam优化算法

python 复制代码
loss_fn = nn.CrossEntropyLoss()
learn_rate = 0.0001
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

开始训练,准确率还是非常高的

python 复制代码
import time
epochs = 30
train_loss = []
train_acc = []
test_loss = []
test_acc = []

T1 = time.time()

best_acc = 0
best_model = 0

for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval() # 确保模型不会进行训练操作
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    print("epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f"
          % (epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))

T2 = time.time()
print('程序运行时间:%s秒' % (T2 - T1))

PATH = './best_model.pth'  # 保存的参数文件名
if best_model is not None:
    torch.save(best_model.state_dict(), PATH)
    print('保存最佳模型')
print("Done")

模型可视化

使用matplotlib可视化训练、测试过程

python 复制代码
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

模型预测

定义模型预测函数

python 复制代码
from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}') 

开始单张图片预测

python 复制代码
predict_one_image(image_path='./data/beans/Dark/dark (1).png', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes) # 预测结果是:Dark

查看最优的模型的准确率和损失

python 复制代码
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss # (0.9916666666666667, 0.0399394309388299)

其他问题

本次实验又使用了单GPU,进行训练

python 复制代码
# 单GPU
from torchsummary import summary
# 将模型转移到GPU中
model = Model()
model = model.to(device)

结果如下

总结

本次实验主要手写了经典网络架构VGG16,并且使用两张GPU和一张GPU进行实验,但惊奇的发现,一张GPU运行时间是164秒,两张GPU运行时间是318秒,明明算力提高了,反而训练时间更加慢了,经过资料的查询,大概原因是数据量很小,GPU之间传递数据占用时间相对大于加速运算时间,所以训练时间反而变长了。

相关推荐
通信.萌新28 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
ARM+FPGA+AI工业主板定制专家30 分钟前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习
赛丽曼33 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
Bran_Liu34 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
伟贤AI之路36 分钟前
从音频到 PDF:AI 全流程打造完美英文绘本教案
人工智能
weixin_3077791337 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
helianying5542 分钟前
云原生架构下的AI智能编排:ScriptEcho赋能前端开发
前端·人工智能·云原生·架构
池央1 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis1 小时前
如何在 Flask 中实现用户认证?
后端·python·flask