吴恩达《机器学习》1-5:模型描述

一、单变量线性回归

单变量线性回归是监督学习中的一种算法,通常用于解决回归问题。在单变量线性回归中,我们有一个训练数据集,其中包括一组输入特征(通常表示为𝑥)和相应的输出目标(通常表示为𝑦)。这个算法的目标是学习一个线性函数,通常表示为ℎ𝜃(𝑥),其中𝜃是要学习的参数,以便将输入特征映射到输出目标。

具体地,对于单变量线性回归,通常使用以下形式的线性函数:

其中:

  • ℎ𝜃(𝑥) 表示通过算法学习到的假设(或预测)函数。
  • 𝜃0 和 𝜃1 是要学习的模型参数,分别表示假设的截距和斜率。
  • 𝑥 是输入特征,通常表示单个特征。
  • 𝑦 是输出目标,表示要预测的结果。

单变量线性回归的目标是通过训练数据集学习出最佳的模型参数𝜃0和𝜃1,使得假设ℎ𝜃(𝑥)能够最好地拟合训练数据集中的输入特征和输出目标。一旦学习到了合适的参数,就可以使用模型来进行预测,根据给定的输入特征𝑥,预测相应的输出目标𝑦。

在单变量线性回归问题中,我们通常通过最小化成本函数(例如均方误差)来找到最佳的参数𝜃0和𝜃1,以使模型与训练数据尽可能接近。这就是单变量线性回归的基本思想,它可用于估计输入特征与输出目标之间的线性关系,例如根据房屋尺寸来估计房屋价格。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
小奶包他干奶奶4 小时前
Webpack学习——Loader(文件转换器)
前端·学习·webpack
小奶包他干奶奶4 小时前
Webpack学习——原理理解
学习·webpack·devops
励志成为美貌才华为一体的女子4 小时前
强化学习PPO和GRPO逻辑学习
学习
meichaoWen5 小时前
【Vue3】vue3的全面学习(一)
前端·javascript·学习
FFF团团员9095 小时前
树莓派学习笔记3:LED和Button
笔记·学习
碧海潮生_CC5 小时前
【CUDA笔记】04 CUDA 归约, 原子操作,Warp 交换
笔记·cuda
yLDeveloper6 小时前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
摇滚侠6 小时前
2025最新 SpringCloud 教程,从单体到集群架构,笔记02
笔记·spring cloud·架构
风123456789~6 小时前
【OceanBase专栏】OB背景知识
数据库·笔记·oceanbase
智者知已应修善业8 小时前
【51单片机普通延时奇偶灯切换】2023-4-4
c语言·经验分享·笔记·嵌入式硬件·51单片机