吴恩达《机器学习》1-5:模型描述

一、单变量线性回归

单变量线性回归是监督学习中的一种算法,通常用于解决回归问题。在单变量线性回归中,我们有一个训练数据集,其中包括一组输入特征(通常表示为𝑥)和相应的输出目标(通常表示为𝑦)。这个算法的目标是学习一个线性函数,通常表示为ℎ𝜃(𝑥),其中𝜃是要学习的参数,以便将输入特征映射到输出目标。

具体地,对于单变量线性回归,通常使用以下形式的线性函数:

其中:

  • ℎ𝜃(𝑥) 表示通过算法学习到的假设(或预测)函数。
  • 𝜃0 和 𝜃1 是要学习的模型参数,分别表示假设的截距和斜率。
  • 𝑥 是输入特征,通常表示单个特征。
  • 𝑦 是输出目标,表示要预测的结果。

单变量线性回归的目标是通过训练数据集学习出最佳的模型参数𝜃0和𝜃1,使得假设ℎ𝜃(𝑥)能够最好地拟合训练数据集中的输入特征和输出目标。一旦学习到了合适的参数,就可以使用模型来进行预测,根据给定的输入特征𝑥,预测相应的输出目标𝑦。

在单变量线性回归问题中,我们通常通过最小化成本函数(例如均方误差)来找到最佳的参数𝜃0和𝜃1,以使模型与训练数据尽可能接近。这就是单变量线性回归的基本思想,它可用于估计输入特征与输出目标之间的线性关系,例如根据房屋尺寸来估计房屋价格。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
GIS学姐嘉欣1 分钟前
【智慧城市】2025年中国地质大学(武汉)暑期实训优秀作品(5):智慧矿产
学习·gis·智慧城市·webgis
折翼的恶魔9 分钟前
前端学习之样式设计
前端·css·学习
ARM+FPGA+AI工业主板定制专家5 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
光影少年7 小时前
angular生态及学习路线
前端·学习·angular.js
汇能感知9 小时前
光谱相机的探测器阵列
经验分享·笔记·科技
CHHC18809 小时前
vSIM / SoftSIM笔记
笔记
lisw0510 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
学Linux的语莫10 小时前
机器学习数据处理
java·算法·机器学习
逆小舟11 小时前
【C/C++】指针
c语言·c++·笔记·学习
武文斌7711 小时前
项目学习总结:LVGL图形参数动态变化、开发板的GDB调试、sqlite3移植、MQTT协议、心跳包
linux·开发语言·网络·arm开发·数据库·嵌入式硬件·学习