吴恩达《机器学习》1-5:模型描述

一、单变量线性回归

单变量线性回归是监督学习中的一种算法,通常用于解决回归问题。在单变量线性回归中,我们有一个训练数据集,其中包括一组输入特征(通常表示为𝑥)和相应的输出目标(通常表示为𝑦)。这个算法的目标是学习一个线性函数,通常表示为ℎ𝜃(𝑥),其中𝜃是要学习的参数,以便将输入特征映射到输出目标。

具体地,对于单变量线性回归,通常使用以下形式的线性函数:

其中:

  • ℎ𝜃(𝑥) 表示通过算法学习到的假设(或预测)函数。
  • 𝜃0 和 𝜃1 是要学习的模型参数,分别表示假设的截距和斜率。
  • 𝑥 是输入特征,通常表示单个特征。
  • 𝑦 是输出目标,表示要预测的结果。

单变量线性回归的目标是通过训练数据集学习出最佳的模型参数𝜃0和𝜃1,使得假设ℎ𝜃(𝑥)能够最好地拟合训练数据集中的输入特征和输出目标。一旦学习到了合适的参数,就可以使用模型来进行预测,根据给定的输入特征𝑥,预测相应的输出目标𝑦。

在单变量线性回归问题中,我们通常通过最小化成本函数(例如均方误差)来找到最佳的参数𝜃0和𝜃1,以使模型与训练数据尽可能接近。这就是单变量线性回归的基本思想,它可用于估计输入特征与输出目标之间的线性关系,例如根据房屋尺寸来估计房屋价格。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
peace..12 分钟前
温湿度变送器与电脑进行485通讯连接并显示在触摸屏中(mcgs)
经验分享·学习·其他
teeeeeeemo21 分钟前
回调函数 vs Promise vs async/await区别
开发语言·前端·javascript·笔记
软件黑马王子1 小时前
C#系统学习第八章——字符串
开发语言·学习·c#
AI数据皮皮侠2 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
张德锋3 小时前
Pytorch实现天气识别
机器学习
strongwyy3 小时前
蓝牙墨水屏上位机学习(2)
学习
九皇叔叔3 小时前
(3)手摸手-学习 Vue3 之 变量声明【ref 和 reactive】区别
学习
致***锌4 小时前
期权标准化合约是什么?
笔记
Wilber的技术分享5 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19895 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm