吴恩达《机器学习》1-3:监督学习

一、监督学习

例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习, 通过提供正确答案来训练算法以做出准确的预测或估计。

二、回归问题

回归 : 推测出这一系列连续值属性。
回归问题: 根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被视为典型的回归问题,其中模型的任务是通过学习输入特征(如房屋的面积、地理位置等)与房价之间的关系,来预测出一个连续的数值,即房价。

三、分类问题

分类问题是将输入数据分为不同的离散类别或标签。这些类别可以包括两个或多个不同的取值,例如0、1、2、3,每个值代表不同的类别或标签。在分类问题中,算法的任务是对给定的输入数据进行分类,将其归入相应的类别中。

三、怎么处理无限多个特征

通过支持向量机(SVM),可以利用巧妙的数学技巧来处理具有无限多个特征的数据,从而使计算机能够有效地处理这些复杂的特征集。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
懒惰的bit9 天前
STM32F103C8T6 学习笔记摘要(四)
笔记·stm32·学习
zkyqss9 天前
OVS Faucet练习(下)
linux·笔记·openstack
Jay_5159 天前
C++ STL 模板详解:由浅入深掌握标准模板库
c++·学习·stl
冰茶_9 天前
ASP.NET Core API文档与测试实战指南
后端·学习·http·ui·c#·asp.net
IT古董9 天前
【第二章:机器学习与神经网络概述】02.降维算法理论与实践-(1)主成分分析(Principal Component Analysis, PCA)
神经网络·算法·机器学习
丶Darling.9 天前
深度学习与神经网络 | 邱锡鹏 | 第五章学习笔记 卷积神经网络
深度学习·神经网络·学习
浦东新村轱天乐9 天前
【麻省理工】《how to speaking》笔记
笔记
奔跑的蜗牛AZ9 天前
TiDB 字符串行转列与 JSON 数据查询优化知识笔记
笔记·json·tidb
cwtlw9 天前
Excel学习03
笔记·学习·其他·excel
牛大了20239 天前
【LLM学习】2-简短学习BERT、GPT主流大模型
gpt·学习·bert