吴恩达《机器学习》1-3:监督学习

一、监督学习

例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习, 通过提供正确答案来训练算法以做出准确的预测或估计。

二、回归问题

回归 : 推测出这一系列连续值属性。
回归问题: 根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被视为典型的回归问题,其中模型的任务是通过学习输入特征(如房屋的面积、地理位置等)与房价之间的关系,来预测出一个连续的数值,即房价。

三、分类问题

分类问题是将输入数据分为不同的离散类别或标签。这些类别可以包括两个或多个不同的取值,例如0、1、2、3,每个值代表不同的类别或标签。在分类问题中,算法的任务是对给定的输入数据进行分类,将其归入相应的类别中。

三、怎么处理无限多个特征

通过支持向量机(SVM),可以利用巧妙的数学技巧来处理具有无限多个特征的数据,从而使计算机能够有效地处理这些复杂的特征集。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
噗噗夹的TA之旅8 分钟前
Unity Shader 学习20:URP LitForwardPass PBR 解析
学习·unity·游戏引擎·图形渲染·技术美术
受之以蒙22 分钟前
Rust 与 dora-rs:吃透核心概念,手把手打造跨语言的机器人实时数据流应用
人工智能·笔记·rust
2401_8345170727 分钟前
AD学习笔记-36 gerber文件输出
笔记·学习
hhhhhhh_hhhhhh_29 分钟前
TC3x7-DEMO-V1.0原理图自学笔记
笔记
气π31 分钟前
【JavaWeb】——(若依 + AI)-基础学习笔记
java·spring boot·笔记·学习·java-ee·mybatis·ruoyi
深蓝海拓34 分钟前
PySide6从0开始学习的笔记(三) 布局管理器与尺寸策略
笔记·python·qt·学习·pyqt
暗然而日章34 分钟前
C++基础:Stanford CS106L学习笔记 8 继承
c++·笔记·学习
2401_8345170737 分钟前
AD学习笔记-34 PCBlogo的添加
笔记·学习
被考核重击1 小时前
浏览器原理
前端·笔记·学习
Lynnxiaowen1 小时前
今天我们继续学习kubernetes内容Helm
linux·学习·容器·kubernetes·云计算