吴恩达《机器学习》1-3:监督学习

一、监督学习

例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习, 通过提供正确答案来训练算法以做出准确的预测或估计。

二、回归问题

回归 : 推测出这一系列连续值属性。
回归问题: 根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被视为典型的回归问题,其中模型的任务是通过学习输入特征(如房屋的面积、地理位置等)与房价之间的关系,来预测出一个连续的数值,即房价。

三、分类问题

分类问题是将输入数据分为不同的离散类别或标签。这些类别可以包括两个或多个不同的取值,例如0、1、2、3,每个值代表不同的类别或标签。在分类问题中,算法的任务是对给定的输入数据进行分类,将其归入相应的类别中。

三、怎么处理无限多个特征

通过支持向量机(SVM),可以利用巧妙的数学技巧来处理具有无限多个特征的数据,从而使计算机能够有效地处理这些复杂的特征集。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
Elias不吃糖1 小时前
Java Lambda 表达式
java·开发语言·学习
梨子串桃子_1 小时前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
爱喝可乐的老王2 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
jjjxxxhhh1232 小时前
spdlog介绍使用
学习
北邮刘老师3 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
高锰酸钾_3 小时前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习
啊巴矲3 小时前
小白从零开始勇闯人工智能:机器学习初级篇(PCA数据降维)
人工智能·机器学习
曾浩轩3 小时前
图灵完备Turing Complete 3
学习
天天睡大觉3 小时前
Python学习11
网络·python·学习
laplace01234 小时前
# 第六章 agent框架开发实践 - 学习笔记
人工智能·笔记·学习·语言模型·agent