吴恩达《机器学习》1-3:监督学习

一、监督学习

例如房屋价格的数据集。在监督学习中,我们将已知的房价作为"正确答案",并将这些价格与房屋的特征数据一起提供给学习算法。学习算法使用这些已知答案的数据来学习模式和关系,以便在未知情况下预测其他房屋的价格。这就是监督学习, 通过提供正确答案来训练算法以做出准确的预测或估计。

二、回归问题

回归 : 推测出这一系列连续值属性。
回归问题: 根据输入特征来预测或推测出连续的数值结果。举例来说,房价预测可以被视为典型的回归问题,其中模型的任务是通过学习输入特征(如房屋的面积、地理位置等)与房价之间的关系,来预测出一个连续的数值,即房价。

三、分类问题

分类问题是将输入数据分为不同的离散类别或标签。这些类别可以包括两个或多个不同的取值,例如0、1、2、3,每个值代表不同的类别或标签。在分类问题中,算法的任务是对给定的输入数据进行分类,将其归入相应的类别中。

三、怎么处理无限多个特征

通过支持向量机(SVM),可以利用巧妙的数学技巧来处理具有无限多个特征的数据,从而使计算机能够有效地处理这些复杂的特征集。

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
LVerrrr32 分钟前
Missashe考研日记—Day37-Day43
学习·考研
TIF星空2 小时前
【使用 C# 获取 USB 设备信息及进行通信】
开发语言·经验分享·笔记·学习·microsoft·c#
AI算法工程师Moxi5 小时前
什么时候可以开始学习深度学习?
人工智能·深度学习·学习
好评笔记5 小时前
Meta的AIGC视频生成模型——Emu Video
人工智能·深度学习·机器学习·aigc·transformer·校招·面试八股
jiedaodezhuti6 小时前
ElasticSearch重启之后shard未分配问题的解决
笔记·elasticsearch
思通数据7 小时前
AI全域智能监控系统重构商业清洁管理范式——从被动响应到主动预防的监控效能革命
大数据·人工智能·目标检测·机器学习·计算机视觉·数据挖掘·ocr
大神薯条老师7 小时前
Python零基础入门到高手8.4节: 元组与列表的区别
开发语言·爬虫·python·深度学习·机器学习·数据分析
z人间防沉迷k7 小时前
堆(Heap)
开发语言·数据结构·笔记·python·算法
z542968z7 小时前
Springboot3自定义starter笔记
笔记
芒果量化8 小时前
量化交易 - 网格交易策略实现与原理解析
python·算法·机器学习·金融