C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点

Chaikin算法------计算折线对应的平滑曲线坐标点

本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐标点集合。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。

文章目录

引言

在计算机图形学和数据可视化领域,平滑曲线的生成是一个重要的问题。平滑曲线可以使得数据更加易于理解和分析,同时也可以提高图形的美观性。折线是一种常见的曲线表示方法,但是折线本身具有较高的噪声和锯齿状的特点,需要进行平滑处理。本文提出了一种基于Chaikin曲线平滑处理的算法,可以将折线转化为平滑的曲线。


算法

算法流程

流程的具体步骤如下:

  1. 检查输入的坐标点集合的合法性,确保至少有3个坐标点。
  2. 对输入的参数进行范围约束,确保迭代次数大于等于1,张力因子在0到1之间。
  3. 将张力因子映射到0.05到0.45之间,以便在计算切割距离时使用。
  4. 迭代计算,使用Chaikin曲线平滑处理的方法对坐标点集合进行处理。
  5. 返回平滑后的曲线坐标点集合。
csharp 复制代码
        /// <summary>
        /// 计算折线对应的平滑曲线坐标点
        /// </summary>
        /// <param name="points">坐标集合</param>
        /// <param name="tension">张力因子[0,1],用于控制曲线的平滑程度。张力因子越小时切割点会越靠近线段的起始点,反之会靠近线段的结束点。</param>
        /// <param name="iterationCount">迭代次数,用于控制曲线平滑的精度</param>
        /// <returns></returns>
        /// <exception cref="ArgumentException"></exception>
        private List<Point> SmoothCurveChaikin(Point[] points, float tension = 0.5f, byte iterationCount = 1)
        {
            // 坐标点合法性检查
            if (points == null || points.Length < 3)
            {
                throw new ArgumentException("至少需要3个坐标点。", nameof(points));
            }

            // 参数范围约束
            iterationCount = Math.Max(iterationCount, (byte)1);
            tension = Math.Max(tension, 0);
            tension = Math.Min(tension, 1);

            // 参数的限制在0到1之间是为了简化参数的使用和理解。将张力因子的取值范围映射到0到1之间,使得参数的范围更加直观和易于控制。
            // 通过将张力因子乘以0.4并加上0.05,可以将0到1之间的参数映射到0.05到0.45之间,以便在计算切割距离时使用。
            // 张力因子在这里用于控制曲线的平滑程度。具体来说,张力因子定义了线段半长切角距离的一个尺度,取值范围在0.05到0.45之间。
            // 当张力因子为0.5时,相当于使用了经典的Chaikin算法,即将每个线段切割成四分之一和四分之三的两个点。这样可以保持曲线的对称性。
            double cutdist = 0.05 + (tension * 0.4);

            // 迭代计算
            List<Point> lst = points.ToList();
            for (int i = 1; i <= iterationCount; i++)
            {
                lst = SmoothChaikin(lst, cutdist);
            }
            return lst;
        }

Chaikin曲线平滑处理

Chaikin曲线平滑处理是一种基于切割和插值的方法,通过对线段进行切割和插值操作,得到平滑的曲线。

具体步骤如下:

  1. 添加第一个点,即原始点集合的第一个点。
  2. 将每一个点拆分成前后两个点,通过计算切割距离参数和原始点的坐标进行插值计算。
  3. 添加插值计算得到的两个点。
  4. 添加最后一个点,即原始点集合的最后一个点。
  5. 返回平滑后的曲线坐标点集合。
csharp 复制代码
        /// <summary>
        /// 对点集合进行Chaikin曲线平滑处理
        /// </summary>
        /// <param name="points">要进行平滑处理的曲线的原始点</param>
        /// <param name="cuttingDist">切割距离参数,用于定义线段切割的尺度。取值范围通常在0.05到0.45之间,用于控制曲线的平滑程度</param>
        /// <returns></returns>
        private List<Point> SmoothChaikin(List<Point> points, double cuttingDist)
        {
            // 添加第一个点
            List<Point> nl = new List<Point> { points[0] };

            // 将每一个点拆分成前后两个点
            Point q, r;
            for (int i = 0; i < points.Count - 1; i++)
            {
                q = new Point(
                    (int)Math.Round(((1 - cuttingDist) * points[i].X + cuttingDist * points[i + 1].X)),
                    (int)Math.Round(((1 - cuttingDist) * points[i].Y + cuttingDist * points[i + 1].Y))
                );

                r = new Point(
                    (int)Math.Round((cuttingDist * points[i].X + (1 - cuttingDist) * points[i + 1].X)),
                    (int)Math.Round((cuttingDist * points[i].Y + (1 - cuttingDist) * points[i + 1].Y))
                );
                nl.Add(q);
                nl.Add(r);
            }

            // 添加最后一个点
            nl.Add(points.Last());

            return nl;
        }

实验与结果

为了验证算法的有效性和可靠性,我们进行了两组测试。

测试1:验证不同迭代次数下的算法结果

测试步骤:

  1. 将张力因子设置为0.5。
  2. 调整迭代次数为1、2、3。
  3. 对比不同迭代次数下的算法结果。

测试2:观察不同张力因子下的算法结果

测试步骤:

  1. 将迭代次数设置为1。
  2. 调整张力因子为0、0.2、0.4、0.6、0.8。
  3. 观察不同张力因子下的算法结果。

本算法在不同的参数设置下进行了实验,得到了不同平滑程度和精度的曲线。实验结果表明,当张力因子较小时,切割点会靠近线段的起始点,曲线的平滑程度较低;当张力因子较大时,切割点会靠近线段的结束点,曲线的平滑程度较高。迭代次数的增加可以提高曲线的平滑精度,但也会增加计算的时间复杂度。实验结果还表明,本算法能够有效地平滑折线,并且具有较高的精度和可控性。


结论

本文介绍了一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。未来的工作可以进一步优化算法的性能和扩展算法的应用范围。


参考资料

  1. 2D Polyline Vertex Smoothing
相关推荐
ChoSeitaku24 分钟前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
Fuxiao___33 分钟前
不使用递归的决策树生成算法
算法
我爱工作&工作love我38 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
白-胖-子1 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级
workflower1 小时前
数据结构练习题和答案
数据结构·算法·链表·线性回归
好睡凯1 小时前
c++写一个死锁并且自己解锁
开发语言·c++·算法
Sunyanhui11 小时前
力扣 二叉树的直径-543
算法·leetcode·职场和发展
一个不喜欢and不会代码的码农2 小时前
力扣105:从先序和中序序列构造二叉树
数据结构·算法·leetcode
前端郭德纲2 小时前
浏览器是加载ES6模块的?
javascript·算法