机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)(2)

KNN-手写数字数据集:

使用sklearn中的KNN 算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离

运行结果:(大概要运行4分钟左右)

代码:

python 复制代码
import pandas as pd
import os

def hamming(str1, str2):
    if len(str1) != len(str2):
        raise ValueError("两个字符串长度不相等")
    return sum(c1 != c2 for c1, c2 in zip(str1, str2))

def get_train():
    path = 'digits/trainingDigits'
    trainingFileList0 = os.listdir(path)
    trainingFileList = [file[2:] if file.startswith('._') else file for file in trainingFileList0]
    train = pd.DataFrame()
    img = []
    labels = []
    for i in range(len(trainingFileList)):
        filename = trainingFileList[i]
        with open(f'digits/trainingDigits/{filename}', 'r') as f:
            txt = f.read().replace('\n', '')
        img.append(txt)
        filelabel = filename.split('_')[0]
        labels.append(filelabel)
    train['img'] = img
    train['labels'] = labels
    return train

def get_test():
    path = 'digits/testDigits'
    testFileList0 = os.listdir(path)
    testFileList = [file[2:] if file.startswith('._') else file for file in testFileList0]
    test = pd.DataFrame()
    img = []
    labels = []
    for filename in testFileList:
        with open(f'digits/testDigits/{filename}', 'r') as f:
            txt = f.read().replace('\n', '')
        img.append(txt)
        filelabel = filename.split('_')[0]
        labels.append(filelabel)
    test['img'] = img
    test['labels'] = labels
    return test

def handwritingClass(train, test, k):
    n = train.shape[0]
    m = test.shape[0]
    result = []
    for i in range(m):
        dist = []
        for j in range(n):
            d = str(hamming(train.iloc[j, 0], test.iloc[i, 0]))
            dist.append(d)
        dist_l = pd.DataFrame({'dist': dist, 'labels': train.iloc[:, 1]})
        dr = dist_l.sort_values(by='dist')[:k]
        re = dr.loc[:, 'labels'].value_counts()
        result.append(re.index[0])
    result = pd.Series(result)
    test['predict'] = result
    acc = (test.iloc[:, -1] == test.iloc[:, -2]).mean()
    print(f'模型预测准确率为{acc:.5f}')
    return test

# 获取训练集和测试集
train = get_train()
test = get_test()

# 调用函数
handwritingClass(train, test, 3)
相关推荐
Light6016 小时前
智链全球,韧性履约:AI赋能新一代海外EPC/EPCM项目管理解决方案
人工智能·数字孪生·风险管理·ai赋能·海外epc/epcm·智慧项目管理·协同增效
嗯嗯=16 小时前
python学习篇
开发语言·python·学习
WoY202016 小时前
opencv-python在ubuntu系统中缺少依赖
python·opencv·ubuntu
棒棒的皮皮18 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
大游小游之老游18 小时前
Python中如何实现一个程序运行时,调用另一文件中的函数
python
2501_9418043218 小时前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch18 小时前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
Swift社区18 小时前
LeetCode 465 最优账单平衡
算法·leetcode·职场和发展
聆风吟º18 小时前
【数据结构手札】空间复杂度详解:概念 | 习题
java·数据结构·算法
weixin_4450547218 小时前
力扣热题51
c++·python·算法·leetcode