【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

笔记链接

【深度学习】吴恩达课程笔记(一)------深度学习概论、神经网络基础

吴恩达课程笔记------浅层神经网络、深层神经网络

四、浅层神经网络

1.双层神经网络表示


x~1~ ,x~2~ ,x~3~:输入层A[0],指的是单个样本的输入值

中间四个神经元:隐藏层A^[1]^

右侧的单个神经元:输出层A^[2]^

单次训练过程:

  • 正向传播

    • 训练样本分别对隐藏层的各神经元的参数(w向量和b值)进行计算得到z^[1]^
    • 各神经元的z放到一起组成Z^[1]^
    • z^[1]^激活后得到a
    • 各神经元的a放到一起组成A^[1]^

    z 1 [ 1 ] = w 1 [ 1 ] T x + b 1 [ 1 ] , a 1 [ 1 ] = σ ( z 1 [ 1 ] ) z 2 [ 1 ] = w 2 [ 1 ] T x + b 2 [ 1 ] , a 1 [ 1 ] = σ ( z 2 [ 1 ] ) z 3 [ 1 ] = w 3 [ 1 ] T x + b 3 [ 2 ] , a 1 [ 1 ] = σ ( z 3 [ 1 ] ) z 4 [ 1 ] = w 4 [ 1 ] T x + b 4 [ 1 ] , a 1 [ 1 ] = σ ( z 4 [ 1 ] ) z^{[1]}{1}=w^{[1]T}{1}x+b^{[1]}{1},a^{[1]}{1}=σ(z^{[1]}{1})\\ z^{[1]}{2}=w^{[1]T}{2}x+b^{[1]}{2},a^{[1]}{1}=σ(z^{[1]}{2})\\ z^{[1]}{3}=w^{[1]T}{3}x+b^{[2]}{3},a^{[1]}{1}=σ(z^{[1]}{3})\\ z^{[1]}{4}=w^{[1]T}{4}x+b^{[1]}{4},a^{[1]}{1}=σ(z^{[1]}{4})\\ z1[1]=w1[1]Tx+b1[1],a1[1]=σ(z1[1])z2[1]=w2[1]Tx+b2[1],a1[1]=σ(z2[1])z3[1]=w3[1]Tx+b3[2],a1[1]=σ(z3[1])z4[1]=w4[1]Tx+b4[1],a1[1]=σ(z4[1])

    • 各神经元的A^[1]^再作为训练样本对对输出层的单个神经元的参数(w向量和b值)进行计算得到z^[2]^
    • z^[2]^激活得到a^[2]^

    Z [ 1 ] = W [ 1 ] X + b [ 1 ] A [ 1 ] = σ ( Z [ 1 ] ) Z [ 2 ] = W [ 2 ] A [ 1 ] + b [ 2 ] A [ 2 ] = σ ( Z [ 2 ] ) Z^{[1]}=W^{[1]}X+b^{[1]}\\ A^{[1]}=σ(Z^{[1]})\\ Z^{[2]}=W^{[2]}A^{[1]}+b^{[2]}\\ A^{[2]}=σ(Z^{[2]}) Z[1]=W[1]X+b[1]A[1]=σ(Z[1])Z[2]=W[2]A[1]+b[2]A[2]=σ(Z[2])

  • 反向传播

    • 从输出结果到第二层到第一层依次计算对成本函数的导数,达到对各个w、b的迭代、训练效果

2.双层神经网络的前向传播

多个样本

训练样本集:X = [x^(1)^,x^(2)^,x^(3)^, ... ,x^(m)^],其中x^(i)^是第 i 个训练样本,共m个样本

n^[0]^:第n层的单元数,n^[0]^表示特征向量x的维度

第一层前向传播

第一层神经元的w参数集:

第一层神经元的b参数集:

第一层前向传播过程计算Z^[1]^

第一层前向传播过程计算A^[1]^

第二层前向传播

第二层神经元的w参数集:

第二层神经元的b参数集:

第二层前向传播过程计算Z^[2]^

第二层前向传播过程计算A^[2]^

核对矩阵维数
第一层 X . s h a p e = ( n [ 0 ] , m ) W [ 1 ] . s h a p e = ( n [ 1 ] , n [ 0 ] ) b [ 1 ] . s h a p e = ( n [ 1 ] , 1 ) Z [ 1 ] . s h a p e = ( n [ 1 ] , m ) A [ 1 ] . s h a p e = ( n [ 1 ] , m ) 第二层 W [ 2 ] . s h a p e = ( n [ 2 ] , n [ 1 ] ) Z [ 2 ] . s h a p e = ( n [ 2 ] , m ) A [ 2 ] . s h a p e = ( n [ 2 ] , m ) Y . s h a p e = A [ 2 ] . s h a p e = ( n [ 2 ] , m ) \textcolor{red}{第一层}\\ X.shape=(n^{[0]},m)\\ W^{[1]}.shape=(n^{[1]},n^{[0]})\\ b^{[1]}.shape=(n^{[1]},1)\\ Z^{[1]}.shape=(n^{[1]},m)\\ A^{[1]}.shape=(n^{[1]},m)\\ \textcolor{red}{第二层} \\ W^{[2]}.shape=(n^{[2]},n^{[1]})\\ Z^{[2]}.shape=(n^{[2]},m)\\ A^{[2]}.shape=(n^{[2]},m)\\ Y.shape=A^{[2]}.shape=(n^{[2]},m) 第一层X.shape=(n[0],m)W[1].shape=(n[1],n[0])b[1].shape=(n[1],1)Z[1].shape=(n[1],m)A[1].shape=(n[1],m)第二层W[2].shape=(n[2],n[1])Z[2].shape=(n[2],m)A[2].shape=(n[2],m)Y.shape=A[2].shape=(n[2],m)

3.双层神经网络的反向传播

参数

训练样本维数: n [ 0 ] 隐藏层神经元个数: n [ 1 ] 输出层神经元个数: n [ 2 ] = 1 W [ 1 ] : ( n [ 1 ] , n [ 0 ] ) b [ 1 ] : ( n [ 1 ] , 1 ) W [ 2 ] : ( n [ 2 ] , n [ 1 ] ) b [ 2 ] : ( n [ 2 ] , 1 ) 成本函数: J ( W , b ) = 1 m ∑ i = 1 m L ( y ^ i , y i ) 训练样本维数:n^{[0]} \\ 隐藏层神经元个数:n^{[1]} \\ 输出层神经元个数:n^{[2]}=1 \\ W^{[1]}:(n^{[1]},n^{[0]})\\ b^{[1]}:(n^{[1]},1)\\ W^{[2]}:(n^{[2]},n^{[1]})\\ b^{[2]}:(n^{[2]},1)\\ 成本函数:J(W,b)=\frac{1}{m}\sum_{i=1}^{m}{L(ŷ_i,y_i)} 训练样本维数:n[0]隐藏层神经元个数:n[1]输出层神经元个数:n[2]=1W[1]:(n[1],n[0])b[1]:(n[1],1)W[2]:(n[2],n[1])b[2]:(n[2],1)成本函数:J(W,b)=m1i=1∑mL(y^i,yi)

梯度下降

d W [ i ] = ∂ J ∂ W [ i ] , d b [ i ] = ∂ J ∂ b [ i ] W [ i ] = W [ i ] − α d W [ i ] b [ i ] = b [ i ] − α d b [ i ] i = 1 , 2 dW^{[i]}=\frac{\partial J}{\partial W^{[i]}},db^{[i]}=\frac{\partial J}{\partial b^{[i]}}\\ W^{[i]}=W^{[i]}-\alpha dW{[i]} \\ b^{[i]}=b^{[i]}-\alpha db{[i]}\\ i=1,2 dW[i]=∂W[i]∂J,db[i]=∂b[i]∂JW[i]=W[i]−αdW[i]b[i]=b[i]−αdb[i]i=1,2

反向传播公式

d Z [ 2 ] = A [ 2 ] − Y d W [ 2 ] = 1 m d Z [ 2 ] A [ 1 ] T d b [ 2 ] = 1 m n p . s u m ( d Z [ 2 ] , a x i s = 1 , k e e p d i m s = T r u e ) d Z [ 1 ] = W [ 2 ] T d Z [ 1 ] ∗ g [ 1 ] ′ ( Z [ 1 ] ) d W [ 1 ] = 1 m d Z [ 1 ] X T d b [ 1 ] = 1 m n p . s u m ( d Z [ 1 ] , a x i s = 1 , k e e p d i m s = T r u e ) dZ^{[2]}=A^{[2]}-Y\\ dW^{[2]}=\frac{1}{m}dZ^{[2]}A^{[1]T}\\ db^{[2]}=\frac{1}{m}np.sum(dZ^{[2]},axis=1,keepdims=True)\\ dZ^{[1]}=W^{[2]T}dZ^{[1]}*g^{[1]'}(Z^{[1]})\\ dW^{[1]}=\frac{1}{m}dZ^{[1]}X^{T}\\ db^{[1]}=\frac{1}{m}np.sum(dZ^{[1]},axis=1,keepdims=True)\\ dZ[2]=A[2]−YdW[2]=m1dZ[2]A[1]Tdb[2]=m1np.sum(dZ[2],axis=1,keepdims=True)dZ[1]=W[2]TdZ[1]∗g[1]′(Z[1])dW[1]=m1dZ[1]XTdb[1]=m1np.sum(dZ[1],axis=1,keepdims=True)

第二层反向传播推导

4.激活函数

  1. sigmoid:只可能用于二元分类的输出层。
    a = 1 1 + e − z d a d z = a ( 1 − a ) a=\frac{1}{1+e^{-z}}\\ \frac{da}{dz}=a(1-a) a=1+e−z1dzda=a(1−a)

  2. tanh:几乎在所有情况下优于sigmoid函数。(计算速度更快)
    a = e z − e − z e z + e − z d a d z = 1 − a 2 a=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}\\ \frac{da}{dz}=1-a^2 a=ez+e−zez−e−zdzda=1−a2

  3. ReLU(Rectified Linear Unit):最常用的默认激活函数
    a = m a x ( 0 , z ) d a d z = { 0 , z < 0 1 , z > 0 u n d e f i n e d , z = 0 a=max(0,z)\\ \frac{da}{dz}=\left\{ \begin{aligned} 0 & , z<0 \\ 1 & , z>0 \\ undefined&,z=0 \end{aligned} \right. a=max(0,z)dzda=⎩ ⎨ ⎧01undefined,z<0,z>0,z=0

  4. leaky ReLU:有人认为这个比ReLU好
    a = m a x ( α z , z ) , α u s u a l l y l e s s t h a n 1 d a d z = { α , z < 0 1 , z > 0 u n d e f i n e d , z = 0 a=max(\alpha z,z),\alpha \ usually \ less\ than\ 1\\ \frac{da}{dz}=\left\{ \begin{aligned} \alpha & , z<0 \\ 1 & , z>0 \\ undefined&,z=0 \end{aligned} \right. a=max(αz,z),α usually less than 1dzda=⎩ ⎨ ⎧α1undefined,z<0,z>0,z=0

5.为什么要使用非线性激活函数?

  • 解决线性不可分问题:线性激活函数(如恒等映射)只能产生线性变换,无法处理非线性可分的问题。
  • 增强模型的表达能力:非线性激活函数能够引入非线性变换,使得神经网络能够学习更加复杂的模式和特征。
  • 防止梯度消失:在深层神经网络中,使用线性激活函数会导致梯度逐层地缩小,进而导致梯度消失的问题。
  • 增加模型的非线性响应:非线性激活函数可以引入非线性响应,使得模型能够更好地适应数据的非线性特征。这对于处理图像、语音等复杂数据具有重要意义,能够提高模型的性能。

只有一种情况可能使用线性激活函数:在输出层。

6.为什么要对W随机初始化?

  • 如果把W初始化为全部为0,那么第一层上的神经元训练后都将是相同的,其下一层的神经元对上一层的判断权重也是完全相同的,同时这一层的神经元也会是完全相同的。由归纳法,每一层上的神经元都是完全相同的。这样就丧失了多层神经网络的判断性能优势。
  • 初始化时应该使W中的数字尽量小,以使得sigmoid或tanh计算导数时处于导数较大的区域,以保证迭代学习的速度

五、深层神经网络

1.变量定义

变量名 变量含义
l 层数
n^[l]^ l 层的单元数

2.矩阵的维数

矩阵符号 矩阵维数
X (n^[0]^,m)
W^[l]^ and dW^[l]^ (n^[l]^,n^[l-1]^)
b^[l]^ and db^[l]^ (n^[l]^,1)
Z^[l]^ and dZ^[l]^ (n^[l]^,m)
A^[l]^ and dA^[l]^ (n^[l]^,m)
Y (n^[the last l ]^,m)

3.为什么使用深层表示(Deep Representation)

深层表示(Deep Representation)是神经网络中的一个重要概念,它指的是通过多层非线性变换来逐步提取输入数据的高级特征表示。

以下是使用深层表示的几个主要原因:

  1. 特征表达能力增强:深层表示可以通过逐层的非线性变换,将原始输入数据转化为更高级别的抽象特征表示。每一层都可以学习到数据的不同抽象层次的特征,使得模型能够更好地捕捉输入数据中的结构和模式。相比于浅层模型,深层表示具有更强大的特征表达能力。
  2. 特征的层次化表示:深层表示可以将输入数据的特征表示分解为多个层次,每一层都对应着不同抽象层次的特征。这种层次化的特征表示使得模型能够更好地理解数据的结构和语义,从而提高模型的泛化能力和鲁棒性。
  3. 梯度传播更有效:在深层网络中,通过反向传播算法计算梯度时,梯度可以更容易地传播到较早的层。这是因为深层网络中的参数共享和权重共享的结构,使得梯度能够通过多个层级的连接路径传递。相比于浅层网络,深层网络可以更有效地利用梯度信息进行参数更新,从而提高模型的训练效率和性能。
  4. 数据表示的可分离性:深层表示可以将输入数据的不同方面进行分离和表示。例如,在图像处理任务中,底层的卷积层可以学习到边缘和纹理等低级特征,而高层的全连接层可以学习到物体的形状和类别等高级特征。这种分离性使得模型能够更好地对不同方面的特征进行建模和学习。

4.深层神经网络块图解


5.深层神经网络前向和反向传播的实现

前向传播
A [ 0 ] = X Z [ l ] = W [ 1 ] A [ l − 1 ] + b [ l ] A [ l ] = g [ l ] ( Z [ l ] ) A^{[0]}=X\\ Z^{[l]}=W^{[1]}A^{[l-1]}+b^{[l]}\\ A^{[l]}=g^{[l]}(Z^{[l]})\\ A[0]=XZ[l]=W[1]A[l−1]+b[l]A[l]=g[l](Z[l])

反向传播
d Z [ l ] = d A [ l ] ∗ g [ l ] ′ ( Z [ l ] ) d W [ l ] = 1 m d Z [ l ] A [ l − 1 ] T d b [ l ] = 1 m n p . s u m ( d Z [ l ] , a x i s = 1 , k e e p d i m s = T r u e ) d A [ l − 1 ] = W [ l ] T d Z [ l ] \textcolor{red}{}\\ dZ^{[l]}=dA^{[l]}*g^{[l]'}(Z^{[l]})\\ dW^{[l]}=\frac{1}{m}dZ^{[l]}A^{[l-1]T}\\ db^{[l]}=\frac{1}{m}np.sum(dZ^{[l]},axis=1,keepdims=True)\\ dA^{[l-1]}=W^{[l]T}dZ^{[l]} dZ[l]=dA[l]∗g[l]′(Z[l])dW[l]=m1dZ[l]A[l−1]Tdb[l]=m1np.sum(dZ[l],axis=1,keepdims=True)dA[l−1]=W[l]TdZ[l]

相关推荐
XianxinMao20 分钟前
Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
深度学习·架构·transformer
HyperAI超神经2 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉
mashagua2 小时前
RPA系列-uipath 学习笔记3
笔记·学习·rpa
nikoni232 小时前
828考研资料汇总
笔记·其他·硬件工程
请站在我身后3 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
青い月の魔女4 小时前
数据结构初阶---二叉树
c语言·数据结构·笔记·学习·算法
qq_589568104 小时前
node.js web框架koa的使用
笔记·信息可视化·echarts
GISer_Jing5 小时前
神经网络初学总结(一)
人工智能·深度学习·神经网络
stm 学习ing5 小时前
HDLBits训练6
经验分享·笔记·fpga开发·fpga·eda·verilog hdl·vhdl
数据分析能量站5 小时前
神经网络-AlexNet
人工智能·深度学习·神经网络