【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割7(数据预处理)

在上一节:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割6(数据预处理) 中,我们已经得到了与mhd图像同seriesUID名称的mask nrrd数据文件了,可以说是一一对应了。

并且,mask的文件,还根据结节被多少人同时标注,区分成了4个文件夹,分别是标注了一、二、三、四次,一共就4个医生参与标注。

再加上官方已经给整理好的肺实质分割的文件,我们就获得了以下这些数据:

  1. ct图像数据;
  2. 肺实质分割数据;
  3. 包含结节位置的mask数据。

一、导言

上述得到的这些,就满足了我们的需求了,都是一一对应的,无论是后续的数据预处理,还是拿过来用于训练,都非常的方便。

但是呢,对于原始的ct数据,他在Z轴上的层厚是不同的,这点可以在dicom文件里面看到,也可以在mhd文件的查询到关于层厚的信息。在这点上,不同的序列,差异是非常大的。表现在一个3维数组的结节上面,在这个维度上就是被压扁,和拉长的样子。

xy方向,其实也是存在spacing的差异的,但是这种差异没有像z轴那么夸张的,这里可以选择处理和不处理均可(有些论文进行了处理,有些没有。默认都是512x512大小,resample后会变小)。

至此,本篇的目的就很明确了,是要做下面几件事:

  1. 对原始图像进行肺实质提取,将肺区外的部分进行裁剪,或者改为固定像素值;
  2. 对图像和结节mask进行resample操作,本篇是zyx均进行resample1mm

二、具体实施

怎么做的部分,我们分三部分:

  1. 肺实质裁剪
  2. imagenodule mask进行resample操作
  3. 获取结节中心点坐标和半径

下面就一一展开

2.1、主函数部分

由于这部分数据量比较多,所以在主函数部分采用了多进程的模式,加快处理速度。需要读进来的数据也就是前面篇章已经处理好的,这里都可以直接使用。

下面就是主函数

python 复制代码
import sys
import numpy as np
import scipy.ndimage
from skimage import measure, morphology
import SimpleITK as sitk
from multiprocessing import Pool
import os
import nrrd

###############################################################################
# 将标记的mask,和ct原图,加入左右肺区分割的图像,生成去除noise的,剩下肺区的ct和结节mask
###############################################################################
def main():
    n_consensus = 4
    do_resample = True
    img_dir = './LUNA16/image_combined'
    lung_mask_dir = './LUNA16/seg-lungs-LUNA16'
    nod_mask_dir = os.path.join('./LUNA16/nodule_masks', str(n_consensus))

    save_dir = os.path.join('./LUNA16/preprocessed', str(n_consensus))
    os.makedirs(save_dir, exist_ok=True)

    params_lists = []
    # 多进程处理
    for pid in os.listdir(nod_mask_dir):
        #                         seg-lungs-LUNA16, masks_test/3, seg-lungs-LUNA16, preprocessed_test/3, True
        params_lists.append([pid, lung_mask_dir, nod_mask_dir, img_dir, save_dir, do_resample])

    pool = Pool(processes=4)
    pool.map(cropResample_process, params_lists)

    pool.close()
    pool.join()

    pool = Pool(processes=4)
    pool.map(generateBBoxes_label, params_lists)

    pool.close()
    pool.join()

if __name__ == '__main__':
    main()

有两个部分,

  • cropResample_process:和名称一样,进行肺实质的cropresample操作;
  • generateBBoxes_label:将处理完毕的结节mask,得到结节中心的坐标和半径。

2.2、肺实质裁剪

这小块的步骤,大概如下:

  1. 首先,就是数据读取,这部分的详细介绍,可以参考我之前的这篇文章:【医学影像数据处理】nii、npz、npy、dcm、mhd 的数据格式互转,及多目标分割处理汇总
  2. 其次,就是将hu值,转化为0-255的值,也就是函数HU2uint8(),对于这部分,可以参考hu值是如何转为0-255的可视化部分的介绍:【医学影像数据处理】 Dicom 文件格式处理汇总
  3. 另外,就是将肺区mask作用到图像上,肺实质外采用pad valud补充
  4. 最后,将处理好的image、mask和相关参数存储到本地

代码如下,就该说明的部分都进行注释,相信能轻易看懂。

python 复制代码
def load_itk_image(filename):
    """Return img array and [z,y,x]-ordered origin and spacing
    """
    itkimage = sitk.ReadImage(filename)
    numpyImage = sitk.GetArrayFromImage(itkimage)

    numpyOrigin = np.array(list(reversed(itkimage.GetOrigin())))
    numpySpacing = np.array(list(reversed(itkimage.GetSpacing())))

    return numpyImage, numpyOrigin, numpySpacing

def HU2uint8(image, HU_min=-1200.0, HU_max=600.0, HU_nan=-2000.0):
    """
    Convert HU unit into uint8 values. First bound HU values by predfined min
    and max, and then normalize
    image: 3D numpy array of raw HU values from CT series in [z, y, x] order.
    HU_min: float, min HU value.
    HU_max: float, max HU value.
    HU_nan: float, value for nan in the raw CT image.
    """
    image_new = np.array(image)
    image_new[np.isnan(image_new)] = HU_nan

    # normalize to [0, 1]
    image_new = (image_new - HU_min) / (HU_max - HU_min)
    image_new = np.clip(image_new, 0, 1)
    image_new = (image_new * 255).astype('uint8')

    return image_new

def convex_hull_dilate(binary_mask, dilate_factor=1.5, iterations=10):
    """
    Replace each slice with convex hull of it then dilate. Convex hulls used
    only if it does not increase area by dilate_factor. This applies mainly to
    the inferior slices because inferior surface of lungs is concave.
    binary_mask: 3D binary numpy array with the same shape of the image,
        that only region of interest is True. One side of the lung in this
        specifical case.
    dilate_factor: float, factor of increased area after dilation
    iterations: int, number of iterations for dilation
    return: 3D binary numpy array with the same shape of the image,
        that only region of interest is True. Each binary mask is ROI of one
        side of the lung.
    """
    binary_mask_dilated = np.array(binary_mask)
    for i in range(binary_mask.shape[0]):
        slice_binary = binary_mask[i]

        if np.sum(slice_binary) > 0:
            slice_convex = morphology.convex_hull_image(slice_binary)

            if np.sum(slice_convex) <= dilate_factor * np.sum(slice_binary):
                binary_mask_dilated[i] = slice_convex

    struct = scipy.ndimage.generate_binary_structure(3, 1)
    binary_mask_dilated = scipy.ndimage.binary_dilation(
        binary_mask_dilated, structure=struct, iterations=10)

    return binary_mask_dilated

def apply_lung_mask(image, binary_mask1, binary_mask2, pad_value=170,
                    bone_thred=210, remove_bone=False):
    """
    Apply the binary mask of each lung to the image. Regions out of interest
    are replaced with pad_value.
    image: 3D uint8 numpy array with the same shape of the image.
    binary_mask1: 3D binary numpy array with the same shape of the image,
        that only one side of lung is True.
    binary_mask2: 3D binary numpy array with the same shape of the image,
        that only the other side of lung is True.
    pad_value: int, uint8 value for padding image regions that is not
        interested.
    bone_thred: int, uint8 threahold value for determine parts of image is
        bone.
    return: D uint8 numpy array with the same shape of the image after
        applying the lung mask.
    """
    binary_mask = binary_mask1 + binary_mask2
    binary_mask1_dilated = convex_hull_dilate(binary_mask1)
    binary_mask2_dilated = convex_hull_dilate(binary_mask2)
    binary_mask_dilated = binary_mask1_dilated + binary_mask2_dilated
    binary_mask_extra = binary_mask_dilated ^ binary_mask

    # replace image values outside binary_mask_dilated as pad value
    image_new = image * binary_mask_dilated + pad_value * (1 - binary_mask_dilated).astype('uint8')

    # set bones in extra mask to 170 (ie convert HU > 482 to HU 0;
    # water).
    if remove_bone:
        image_new[image_new * binary_mask_extra > bone_thred] = pad_value

    return image_new

def cropResample_process(params):
    #    seg-lungs-LUNA16, masks_test/3, seg-lungs-LUNA16, preprocessed_test/3, True
    pid, lung_mask_dir, nod_mask_dir, img_dir, save_dir, do_resample = params

    print('Preprocessing %s...' % (pid))

    img_org, origin, spacing = load_itk_image(os.path.join(img_dir, '%s.mhd' % (pid)))
    lung_mask, _, _ = load_itk_image(os.path.join(lung_mask_dir, '%s.mhd' % (pid)))
    nodule_mask, _ = nrrd.read(os.path.join(nod_mask_dir, '%s.nrrd' % (pid)))

    # 4-右肺   3-左肺   5-气管
    binary_mask_r = lung_mask == 4
    binary_mask_l = lung_mask == 3
    binary_mask = binary_mask_r + binary_mask_l

    img_org = HU2uint8(img_org)
    img_lungRL = apply_lung_mask(img_org, binary_mask_r, binary_mask_l)

有一个点前面从没有说明过,那就是官方提供的lung mask数组,在这里简要的记录下:

  • 数字3,表示左肺
  • 数字4,表示右肺
  • 数字5,表示气管

还是第一次看到这个按位异或运算符(^),简单的学习了下:

按位异或运算符(^)用于将两个操作数的每个对应位进行逻辑异或操作。如果两个对应位的值相同,则结果为0,否则为1。异或的本质是没有进位的加法。

dilate膨胀后的binary mask和原始的binary mask求异或运算,对应位的值相同,结果为0,否则为1。那么,得到的结果也就是膨胀出来的那部分,就是bone,这部分在去除bone阶段使用到。

可能会有这样的疑问 :为什么不直接imagelung mask相乘,得到一个分割肺实质后留下来的image呢?反而需要采用凸包优化的方式,多此一举呢?

:在lung mask里面,肺实质的分割是有误差的。也就是肺实质的分割是沿着肺区边缘的,但是某些结节的位置,恰好在肺区的边界上,且密度很大。那么mask就会呈现一个内凹的一个状态。如果采用上面的方法,这样结节就被抠除了。采用凸包优化,就可以利用稍微扩展肺实质边缘,达到将更多肺区留下来的效果。

但是,对于肺结核等等大病灶的疾病,采用上述取出肺实质的方法就不行。主要是因为肺结核的病种范围比较大,尽管采用了凸包优化,最终还是会切除很大一块肺区位置,这样肺区就不完整了,有些得不偿失。

下面是skimage.morphology.convex_hull_image官方给出的实例,如下:点击直达
作用到我们项目里面,切割后的样子如下:

2.3、resample操作

本篇对resample的操作,在zyx的各个维度上,就雨露均沾,通通调整到1mm的状态,这样得到的一个像素大小,表示的也就是物理大小,不会引起任何一个维度上变形的情况。

代码如下所示:

python 复制代码
def resample(image, spacing, new_spacing=[1.0, 1.0, 1.0], order=1):
    """
    Resample image from the original spacing to new_spacing, e.g. 1x1x1
    image: 3D numpy array of raw HU values from CT series in [z, y, x] order.
    spacing: float * 3, raw CT spacing in [z, y, x] order.
    new_spacing: float * 3, new spacing used for resample, typically 1x1x1,
        which means standardizing the raw CT with different spacing all into
        1x1x1 mm.
    order: int, order for resample function scipy.ndimage.interpolation.zoom
    return: 3D binary numpy array with the same shape of the image after,
        resampling. The actual resampling spacing is also returned.
    """
    # shape can only be int, so has to be rounded.
    new_shape = np.round(image.shape * spacing / new_spacing)

    # the actual spacing to resample.
    resample_spacing = spacing * image.shape / new_shape

    resize_factor = new_shape / image.shape

    image_new = scipy.ndimage.zoom(image, resize_factor, mode='nearest', order=order)

    return (image_new, resample_spacing)

if do_resample:
    print('Resampling...')
    img_lungRL, resampled_spacing = resample(img_lungRL, spacing, order=3)
    seg_nod_mask = np.zeros(img_lungRL.shape, dtype=np.uint8)
    for i in range(int(nodule_mask.max())):
        # 一个结节,一个结节的resample
        mask = (nodule_mask == (i + 1)).astype(np.uint8)
        mask, _ = resample(mask, spacing, order=3)
        seg_nod_mask[mask > 0.5] = i + 1

其中在resample函数里面,使用到了scipy.ndimage.zoom操作,直接将原始数据,zoom到新的shape

python 复制代码
scipy.ndimage.zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *, grid_mode=False)[source]

函数中:

  • input:The input array
  • zoom:The zoom factor along the axes

下面是一段官方案例,展示了zoom前后的变化,可以参考:点击链接直达

python 复制代码
from scipy import ndimage, datasets
import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(121)  # left side
ax2 = fig.add_subplot(122)  # right side
ascent = datasets.ascent()
result = ndimage.zoom(ascent, 3.0)
ax1.imshow(ascent, vmin=0, vmax=255)
ax2.imshow(result, vmin=0, vmax=255)
plt.show()

zoom前后的变化,如下所示:

发现这个scipy库还真是好用,后续找时间全面的补充下这块的知识。

2.4、存储到本地

这部分就比较的简单了,主要就是说下数组存储的一些新的:

  • npy文件存储一些简单的数组,比如下文的spacing、坐标等等;
  • nrrd文件存储多维数组,比如下面的imagemask数组图像,大小是240x320x320大小的;
    以前喜欢用nii作为存储文件,现在发现不太好用,nrrd也可以存储数组,还能存储header头。

下面是代码:

python 复制代码
lung_box = get_lung_box(binary_mask, img_lungRL.shape)  # 获取肺区分割的外轮廓

z_min, z_max = lung_box[0]
y_min, y_max = lung_box[1]
x_min, x_max = lung_box[2]

# 裁剪操作,去除肺区外的
img_lungRL = img_lungRL[z_min:z_max, y_min:y_max, x_min:x_max]
if do_resample:
    seg_nod_mask = seg_nod_mask[z_min:z_max, y_min:y_max, x_min:x_max]
else:
    seg_nod_mask = nodule_mask[z_min:z_max, y_min:y_max, x_min:x_max]

np.save(os.path.join(save_dir, '%s_origin.npy' % (pid)), origin)  # origin (3,) 记录三维图像origin坐标信息
if do_resample:
    np.save(os.path.join(save_dir, '%s_spacing.npy' % (pid)), resampled_spacing)  # 记录了resample前后x\y\z三个维度的scale系数
np.save(os.path.join(save_dir, '%s_ebox_origin.npy' % (pid)), np.array((z_min, y_min, x_min)))

nrrd.write(os.path.join(save_dir, '%s_clean.nrrd' % (pid)), img_lungRL)  # 去除掉非肺区后的CT图像
nrrd.write(os.path.join(save_dir, '%s_mask.nrrd' % (pid)), seg_nod_mask)  # 去除掉非肺区后的结节MASK图像

2.5、获取结节中心点坐标和半径

这里获取标记结节的中心点坐标和半径,目的还是为了在裁剪patch等操作时候,能够直接从已经获得的结节里面拿取,直接进行crop操作。

这块的步骤和前面get_lung_box差不多,唯一的区别在于保存下来的是中心点,而不是上面的最大、最小边界坐标。

代码如下:

python 复制代码
def generateBBoxes_label(params):
    pid, lung_mask_dir, nod_mask_dir, img_dir, save_dir, do_resample = params
    masks, _ = nrrd.read(os.path.join(save_dir, '%s_mask.nrrd' % (pid)))

    bboxes = []
    instance_nums = [num for num in np.unique(masks) if num]
    for i in instance_nums:
        mask = (masks == i).astype(np.uint8)
        zz, yy, xx = np.where(mask)
        d = max(zz.max() - zz.min() + 1, yy.max() - yy.min() + 1, xx.max() - xx.min() + 1)
        bboxes.append(np.array([(zz.max() + zz.min()) / 2., (yy.max() + yy.min()) / 2., (xx.max() + xx.min()) / 2., d]))

    bboxes = np.array(bboxes)
    if not len(bboxes):
        print('%s does not have any nodules!!!' % (pid))

    print('Finished masks to bboxes %s' % (pid))
    np.save(os.path.join(save_dir, '%s_bboxes.npy' % (pid)), bboxes)

三、总结

到这里,本篇内容,结合上一篇的内容,我们对Luna16的数据处理基本上就完成了,也完成了我们最早希望得到的内容:

  1. imagesmask数组,文件名一一对应;
  2. resample操作到1mm
  3. 肺实质外的部分丢弃;

6 和 7 这两个篇章,都是对前面几个章节数据部分的补充,你参考这两篇进行数据处理也行,参考其他的数据处理也行,最终得到的数据形式,只要是一样的就行。

相关推荐
这个男人是小帅14 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
__基本操作__16 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
Doctor老王20 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒20 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
埃菲尔铁塔_CV算法6 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】7 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_452600697 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪
学术搬运工7 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理