怎么用python代码查看可用的gpu,然后指定可用的gpu运行

查看gpu

python 复制代码
import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    # 获取GPU设备数量
    device_count = torch.cuda.device_count()

    # 列出可用的GPU设备
    for i in range(device_count):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
    print("CUDA is not available. No GPU devices found.")

输出结果

设置指定gpu运行

指定上面输出的5号卡

python 复制代码
if torch.cuda.is_available():
    # 指定要使用的GPU设备编号
    device = torch.device("cuda:5")
    print(f"Using GPU {device} - {torch.cuda.get_device_name(device)}")
else:
    print("CUDA is not available. No GPU devices found.")

查看gpu的内存情况等

python 复制代码
import subprocess

# 执行nvidia-smi命令以获取GPU信息
nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode()

# 切分输出为每个GPU的信息
gpu_info = nvidia_smi_output.strip().split('\n\n')

# 遍历每个GPU的信息
for i, info in enumerate(gpu_info):
    print(f"GPU {i}:")
    print(info)
相关推荐
deephub5 小时前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP5 小时前
BERT系列模型
人工智能·深度学习·bert
应用市场6 小时前
构建自定义命令行工具 - 打造专属指令体
开发语言·windows·python
东方佑6 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
IT_Octopus6 小时前
triton backend 模式docker 部署 pytorch gpu模型 镜像选择
pytorch·docker·triton·模型推理
Dfreedom.7 小时前
一文掌握Python四大核心数据结构:变量、结构体、类与枚举
开发语言·数据结构·python·变量·数据类型
一半烟火以谋生7 小时前
Python + Pytest + Allure 自动化测试报告教程
开发语言·python·pytest
格林威7 小时前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
叶子丶苏8 小时前
第八节_PySide6基本窗口控件_按钮类控件(QAbstractButton)
python·pyqt
百锦再8 小时前
对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析
java·开发语言·python·架构·eclipse·php·maven