怎么用python代码查看可用的gpu,然后指定可用的gpu运行

查看gpu

python 复制代码
import torch

# 检查CUDA是否可用
if torch.cuda.is_available():
    # 获取GPU设备数量
    device_count = torch.cuda.device_count()

    # 列出可用的GPU设备
    for i in range(device_count):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
    print("CUDA is not available. No GPU devices found.")

输出结果

设置指定gpu运行

指定上面输出的5号卡

python 复制代码
if torch.cuda.is_available():
    # 指定要使用的GPU设备编号
    device = torch.device("cuda:5")
    print(f"Using GPU {device} - {torch.cuda.get_device_name(device)}")
else:
    print("CUDA is not available. No GPU devices found.")

查看gpu的内存情况等

python 复制代码
import subprocess

# 执行nvidia-smi命令以获取GPU信息
nvidia_smi_output = subprocess.check_output("nvidia-smi", shell=True).decode()

# 切分输出为每个GPU的信息
gpu_info = nvidia_smi_output.strip().split('\n\n')

# 遍历每个GPU的信息
for i, info in enumerate(gpu_info):
    print(f"GPU {i}:")
    print(info)
相关推荐
有Li2 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝2 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
思则变5 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
张较瘦_6 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1236 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
漫谈网络6 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
学技术的大胜嗷6 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
try2find7 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
博观而约取8 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
Akttt9 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img