人工智能-线性神经网络

线性神经网络

在介绍深度神经网络之前,我们需要了解神经网络训练的基础知识。 本章我们将介绍神经网络的整个训练过程, 包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。 为了更容易学习,我们将从经典算法------------线性神经网络开始,介绍神经网络的基础知识。 经典统计学习技术中的线性回归和softmax回归可以视为线性神经网络,

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

在机器学习领域中的大多数任务通常都与预测 (prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都是回归问题。 在后面的章节中,我们将介绍分类问题。分类问题的目标是预测数据属于一组类别中的哪一个。

线性回归的基本元素

线性回归(linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归 ,我们举一个实际的例子: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。 为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。 这个数据集包括了房屋的销售价格、面积和房龄。 在机器学习的术语中,该数据集称为训练数据集 (training data set) 或训练集 (training set)。 每行数据(比如一次房屋交易相对应的数据)称为样本 (sample), 也可以称为数据点 (data point)或数据样本 (data instance)。 我们把试图预测的目标(比如预测房屋价格)称为标签 (label)或目标 (target)。 预测所依据的自变量(面积和房龄)称为特征 (feature)或协变量(covariate)。

相关推荐
方见华Richard8 分钟前
世毫九量子原住民教育理念全书
人工智能·经验分享·交互·原型模式·空间计算
忆~遂愿8 分钟前
GE 引擎进阶:依赖图的原子性管理与异构算子协作调度
java·开发语言·人工智能
凯子坚持 c8 分钟前
CANN-LLM:基于昇腾 CANN 的高性能、全功能 LLM 推理引擎
人工智能·安全
学电子她就能回来吗17 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow17 分钟前
model training platform
人工智能
爱吃泡芙的小白白18 分钟前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
人道领域25 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱29 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能
qq_12498707531 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_1 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j