人工智能-线性神经网络

线性神经网络

在介绍深度神经网络之前,我们需要了解神经网络训练的基础知识。 本章我们将介绍神经网络的整个训练过程, 包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。 为了更容易学习,我们将从经典算法------------线性神经网络开始,介绍神经网络的基础知识。 经典统计学习技术中的线性回归和softmax回归可以视为线性神经网络,

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

在机器学习领域中的大多数任务通常都与预测 (prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都是回归问题。 在后面的章节中,我们将介绍分类问题。分类问题的目标是预测数据属于一组类别中的哪一个。

线性回归的基本元素

线性回归(linear regression)可以追溯到19世纪初, 它在回归的各种标准工具中最简单而且最流行。 线性回归基于几个简单的假设: 首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

为了解释线性回归 ,我们举一个实际的例子: 我们希望根据房屋的面积(平方英尺)和房龄(年)来估算房屋价格(美元)。 为了开发一个能预测房价的模型,我们需要收集一个真实的数据集。 这个数据集包括了房屋的销售价格、面积和房龄。 在机器学习的术语中,该数据集称为训练数据集 (training data set) 或训练集 (training set)。 每行数据(比如一次房屋交易相对应的数据)称为样本 (sample), 也可以称为数据点 (data point)或数据样本 (data instance)。 我们把试图预测的目标(比如预测房屋价格)称为标签 (label)或目标 (target)。 预测所依据的自变量(面积和房龄)称为特征 (feature)或协变量(covariate)。

相关推荐
DisonTangor3 分钟前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI2 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154462 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me072 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao2 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算3 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装3 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801403 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag
music&movie3 小时前
算法工程师认知水平要求总结
人工智能·算法
狂小虎4 小时前
亲测解决self.transform is not exist
python·深度学习