方阵的特征值、特征向量以及特征多项式和特征方程

方阵的特征值、特征向量以及特征多项式和特征方程

一、 特征值和特征向量

定义:设 A \bf A A是 n n n阶矩阵,如果数 λ \lambda λ和 n n n维非零列向量 x \bf x x使得关系式

A x = λ x (1a) {\bf{Ax = }}\lambda {\bf{x}} \tag{1a} Ax=λx(1a)

成立,那么,这样的数 λ \lambda λ称为矩阵 A \bf A A的特征值,非零向量 x \bf x x称为矩阵 A \bf A A所对应于特征值 λ \lambda λ的特征向量。

二、特征方程和特征多项式

2.1 特征方程

式(1a)也可写作:
( A − λ E ) x = 0 (1b) \bf{(A-\lambda E)x=0} \tag{1b} (A−λE)x=0(1b)

这是 n n n个未知数 n n n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
∣ A − λ E ∣ = 0 (2a) {\bf{|A-\lambda E|}} =0\tag{2a} ∣A−λE∣=0(2a)


∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ = 0 (2b) \left| {\begin{array}{ccccccccccccccc}{{a_{11}} - \lambda }&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}} - \lambda }& \cdots &{{a_{2n}}}\\ \vdots & \vdots &{}& \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}} - \lambda }\end{array}} \right| = 0 \tag{2b} a11−λa21⋮an1a12a22−λ⋮an2⋯⋯⋯a1na2n⋮ann−λ =0(2b)

式(2)是以 λ \lambda λ为未知数的一元 n n n次方程,称为矩阵 A \bf A A的特征方程。

2.2 特征多项式

特征方程的左端 ∣ A − λ E ∣ \bf{|A-\lambda E|} ∣A−λE∣是 λ \lambda λ的 n n n次多项式,记作 f ( λ ) f(\lambda) f(λ),称为矩阵 A \bf{A} A的特征多项式。


f ( λ ) = ∣ A − λ E ∣ = ∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ f(\lambda ) = |{\bf{A}} - {\bf{\lambda E}}| = \left| {\begin{array}{ccccccccccccccc}{{a_{11}} - \lambda }&{{a_{12}}}& \cdots &{{a_{1n}}}\\{{a_{21}}}&{{a_{22}} - \lambda }& \cdots &{{a_{2n}}}\\ \vdots & \vdots &{}& \vdots \\{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{nn}} - \lambda }\end{array}} \right| f(λ)=∣A−λE∣= a11−λa21⋮an1a12a22−λ⋮an2⋯⋯⋯a1na2n⋮ann−λ

2.3 特征方程与特征多项式的关系

若特征多项式为 f ( λ ) f(\lambda ) f(λ),则特征方程为:
f ( λ ) = 0 f(\lambda ) = 0 f(λ)=0

2.4 特征方程的解和解的个数

根据矩阵的特征值的定义,易知,矩阵 A \bf A A的特征值就是矩阵 A \bf A A的特征方程 f ( λ ) = 0 f(\lambda ) = 0 f(λ)=0的解。

特征方程在复数范围内恒有解,其解的个数为特征方程的次数(重根按重数计算),因此, n n n阶矩阵 A \bf A A在复数范围内有 n n n个特征值,或者说矩阵 A \bf A A的特征方程有 n n n个解。

三、矩阵特征值的性质

设 n n n阶矩阵 A = ( a i j ) {\bf{A}} = ({a_{ij}}) A=(aij)的特征值为 λ 1 , λ 2 , ⋯   , λ n {\lambda _1},{\lambda _2}, \cdots ,{\lambda _n} λ1,λ2,⋯,λn

则这些特征值有以下性质:
性质(1):特征值之和等于其对角线元素之和。
λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n {\lambda 1} + {\lambda 2} + \cdots + {\lambda n} = {a{11}} + {a{22}} + \cdots + {a{nn}} λ1+λ2+⋯+λn=a11+a22+⋯+ann

性质(2):矩阵A特征值之积等于其行列式的值。
λ 1 λ 2 ⋯ λ n = ∣ A ∣ {\lambda _1}{\lambda _2} \cdots {\lambda _n} = |{\bf{A}}| λ1λ2⋯λn=∣A∣

相关推荐
SZ17011023111 小时前
泰勒展开式
线性代数·概率论
passionSnail2 天前
《用MATLAB玩转游戏开发:从零开始打造你的数字乐园》基础篇(2D图形交互)-俄罗斯方块:用旋转矩阵打造经典
算法·matlab·矩阵·游戏程序·交互
Akiiiira2 天前
【日撸 Java 三百行】Day 7(Java的数组与矩阵元素相加)
线性代数·矩阵
HHONGQI1233 天前
LVGL- 按钮矩阵控件
矩阵·lvlgl
元亓亓亓4 天前
LeetCode热题100--54.螺旋矩阵--中等
算法·leetcode·矩阵
小羊在奋斗4 天前
【今日三题】ISBN号码(模拟) / kotori和迷宫(BFS最短路) / 矩阵最长递增路径(dfs)
矩阵·深度优先·宽度优先
18538162800余--4 天前
短视频矩阵系统批量剪辑模式开发详解,支持OEM
线性代数·ui·矩阵·音视频·概率论
HappyAcmen4 天前
线代第二章矩阵第五、六、七节矩阵的转置、方阵的行列式、方阵的伴随矩阵
笔记·学习·线性代数·矩阵
Mi Manchi264 天前
力扣热题100之搜索二维矩阵 II
python·leetcode·矩阵
18538162800余--5 天前
矩阵系统源码搭建 UI 设计开发指南,支持OEM
线性代数·ui·矩阵