贝叶斯分类 是一种统计学分类方法,基于贝叶斯定理,对给定的数据集进行分类。
它的历史可以追溯到18世纪,当时英国统计学家托马斯·贝叶斯发展了贝叶斯定理,这个定理为统计决策提供了理论基础。
不过,贝叶斯分类在实际应用中的广泛使用是在20世纪80年代,当时计算机技术的进步使得大规模数据处理成为可能。
1. 算法概述
贝叶斯分类基于贝叶斯公式,通过已知样本信息来计算未知样本属于各个类别的概率,然后选择概率最大的类别作为未知样本的分类结果。
贝叶斯公式 的简化公式: <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} </math>P(A∣B)=P(B)P(B∣A)P(A)
其中:
- <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( A ) P(A) </math>P(A):事件A发生的概率
- <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( B ) P(B) </math>P(B):事件A发生的概率
- <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( A ∣ B ) P(A|B) </math>P(A∣B):在事件B出现的前提下,A发生的概率
- <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( B ∣ A ) P(B|A) </math>P(B∣A):在事件A出现的前提下,B发生的概率
贝叶斯分类 就是基于这个公式扩展而来。
比如,一个具有 <math xmlns="http://www.w3.org/1998/Math/MathML"> n n </math>n个特征的样本 <math xmlns="http://www.w3.org/1998/Math/MathML"> x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) </math>x=(x1,x2,...,xn),该样本属于K个 可能的类别 <math xmlns="http://www.w3.org/1998/Math/MathML"> y 1 , y 2 , . . . , y k y_1,y_2,...,y_k </math>y1,y2,...,yk。
那么,任一个样本 <math xmlns="http://www.w3.org/1998/Math/MathML"> x x </math>x属于某个类别 <math xmlns="http://www.w3.org/1998/Math/MathML"> y k y_k </math>yk的概率为: <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( y k ∣ x ) = P ( X ∣ y k ) P ( y k ) P ( x ) P(y_k|x) = \frac{P(X|y_k)P(y_k)}{P(x)} </math>P(yk∣x)=P(x)P(X∣yk)P(yk)
根据这个模型,训练样本之后,就可以根据模型来预测某个样本 属于哪个类别 的概率最大。
这里讨论的贝叶斯分类算法,并没有考虑特征之间的关联关系,我们假设每个特征之间是相互独立的。
所以,这个算法也叫做朴素贝叶斯分类。
2. 创建样本数据
贝叶斯分类可以
这次用scikit-learn
中的样本生成器make_classification
来生成分类用的样本数据。
python
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
# 分类数据的样本生成器
X, y= make_classification(n_samples=1000, n_classes=4, n_informative=3)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)
plt.show()
关于样本生成器 的详细内容,请参考:sklearn基础--『数据加载』之样本生成器
3. 模型训练
训练之前,为了减少算法误差,先对数据进行标准化 处理(将数据缩放到0~100
之间)。
python
from sklearn import preprocessing as pp
# 数据标准化
X = pp.minmax_scale(X, feature_range=(1, 100))
y = pp.minmax_scale(y, feature_range=(1, 100))
然后,分割训练集 和测试集。
python
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
按照8:2的比例来划分训练集和测试集。
scikit-learn
中的朴素贝叶斯算法支持多种不同的分类器,
这些分类器基于不同的先验概率分布,适用于不同的数据类型和问题场景。
我们训练模型的时候要根据数据情况选择合适的分类器。
python
from sklearn.naive_bayes import (
GaussianNB,
MultinomialNB,
ComplementNB,
BernoulliNB,
CategoricalNB,
)
reg_names = [
"高斯朴素贝叶斯",
"多项式朴素贝叶斯",
"补码朴素贝叶斯",
"伯努利朴素贝叶斯",
"分类朴素贝叶斯",
]
# 定义
regs = [
GaussianNB(),
MultinomialNB(),
ComplementNB(),
BernoulliNB(),
CategoricalNB(min_categories=101),
]
# 训练模型
for reg in regs:
reg.fit(X_train, y_train)
各个分类器的简要说明:
- GaussianNB:基于高斯分布的朴素贝叶斯分类器。它假设每个特征服从高斯分布,即正态分布。这种分类器适用于连续型数据,特别是对于数值型特征。
- MultinomialNB:基于多项式分布的朴素贝叶斯分类器。它假设每个特征服从多项式分布,适用于离散型数据,特别是对于类别型特征。
- ComplementNB:基于互补分布的朴素贝叶斯分类器。它适用于离散型数据,特别是对于二元分类问题。
- BernoulliNB:基于伯努利分布的朴素贝叶斯分类器。它适用于二元分类问题,特别是对于二元特征或者二元输出。
- CategoricalNB:基于分类分布的朴素贝叶斯分类器。它适用于离散型数据,特别是对于类别型特征。
最后验证各个分类器的模型的训练效果:
python
# 在测试集上进行预测
y_preds = []
for reg in regs:
y_pred = reg.predict(X_test)
y_preds.append(y_pred)
for i in range(len(y_preds)):
correct_pred = np.sum(y_preds[i] == y_test)
print("【{}】 预测正确率:{:.2f}%".format(reg_names[i],
correct_pred / len(y_pred) * 100))
# 运行结果
【高斯朴素贝叶斯】 预测正确率:82.50%
【多项式朴素贝叶斯】 预测正确率:75.00%
【补码朴素贝叶斯】 预测正确率:72.50%
【伯努利朴素贝叶斯】 预测正确率:22.00%
【分类朴素贝叶斯】 预测正确率:50.50%
这里虽然高斯朴素贝叶斯 分类器的正确率最高,但不能就认为这种分类器是最好的。
只能说明高斯朴素贝叶斯 分类器最适合 分类上面随机生成的样本数据。
换成其他的样本数据,高斯朴素贝叶斯分类器的正确率就不一定是最高的了。
4. 总结
总的来说,贝叶斯分类 是一种有效的分类方法,适用于对未知样本进行分类的问题。
它的应用范围广泛,可以处理多分类问题,也可以用于连续变量的分类。
贝叶斯分类算法的主要优势在于:
- 是一种概率模型,可以给出分类结果的概率,因此更加可靠和稳定。
- 可以处理多分类问题 ,也可以用于连续变量的分类。
- 实现相对简单,可以在较短的时间内训练出模型并进行预测。
贝叶斯分类算法也有其不足之处:
- 假设所有特征之间相互独立,但在实际应用中这个假设往往不成立,因此会影响分类结果的准确性。
- 对于大规模的数据集,训练时间和预测时间可能会较长。
- 对于数据的缺失和异常值处理不够鲁棒,可能会对分类结果产生影响。