[论文精读]How Powerful are Graph Neural Networks?

论文原文:[1810.00826] How Powerful are Graph Neural Networks? (arxiv.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!

1. 省流版

1.1. 心得

①Emm, 数学上的解释性确实很强了

②他一直在...在说引理

1.2. 论文框架图

2. 论文逐段精读

2.1. Abstract

①Even though the occurrence of Graph Neural Networks (GNNs) changes graph representation learning to a large extent, it and its variants are all limited in representation abilities.

2.2. Introduction

①Briefly introduce how GNN works (combining node information from k-hop neighbors and then pooling)

②The authors hold the view that ⭐ other graph models mostly based on plenty experimental trial-and-errors rather than theoretical understanding

③They combine GNNs and the Weisfeiler-Lehman (WL) graph isomorphism test to build a new framework, which relys on multisets

④GIN is excellent in distinguish, capturing and representaion

heuristics n.[U] (formal) 探索法;启发式

heuristic adj.(教学或教育)启发式的

2.3. Preliminaries

(1)Their definition

①They define two tasks: node classicifation with node label and graph classification with graph label

(2)Other models

①The authors display the function of GNN in the -th layer:

where only is initialized to (其余细节就不多说了,在GNN的笔记里都有)

②Pooling layer of GraphSAGE, the AGGREGATE function is:

where MAX is element-wise max-pooling operator;

is learnable weight matrix;

and followed by concatenated COMBINE and linear mapping

③AGGREGATE and COMBINE areintegrated in GCN:

④Lastly follows a READOUT layer to get final prediction answer:

where the READOUT function can be different forms

(3)Weisfeiler-Lehman (WL) test

①WL firstly aggregates nodes and their neighborhoods and then hashs the labels (??hash?这好吗)

②Based on WL, WL subtree kernel was proposed to evaluate the similarity between graphs

③A subtree of height 's root node is the node at -th iteration

permutation n.置换;排列(方式);组合(方式)

2.4. Theoretical framework: overview

①The framework overview

②Multiset: is a 2-tuple , where "where is the underlying set of that is formed from its distinct elements, and gives the multiplicity of the elements" (我没有太懂这句话欸)

③They are not allowed that GNN map different neighbors to the same representation. Thus, the aggregation must be injective (我也不造为啥)

2.5. Building powerful graph neural networks

①They define Lemma 2, namely WL graph isomorphism test is able to correctly distinguish non-isomorphic graphs

②Theorem 3 完全没看懂

③Lemma 4: If input feature space is countable, then the space of node hidden features is also countable

2.5.1. Graph isomorphism network (GIN)

①Lemma 5: there is , which makes unique in . Also there is

②Corollary 6: there is unique and .

③Finally, the update function of GIN can be:

2.5.2. Graph-level readout of GIN

①Sum, mean and max aggregators:

②The fail examples when the different and map the same embedding:

where (a) represents all the nodes are the same, only sum can distinguish them;

blue in (b) represents the max, thus max fails to distinguish as well;

same in (c). (盲猜这里其实蓝色v自己是一个节点,但是没有考虑自己的特征,而是纯看1-hop neighborhoods)

③They change the READOUT layer to:

2.6. Less powerful but still interesting GNNs

They designed ablation studies

2.6.1. 1-layer perceptrons are not sufficient

①1-layer perceptrons are akin to linear mapping, which is far insufficient for distinguishing

②Lemma 7: notwithstanding multiset is different from , they might get the same results:

2.6.2. Structures that confuse mean and max-pooling

这一节的内容在2.5.2.②的图下已经解释过了

2.6.3. Mean learns distributions

①Collary 8: there is a function . If and only if multisets and are the same distribution,

②When statistical and distributional information in graph cover more important part, mean aggregator performs better. But when structure is valued more, mean aggregator may do worse.

③Sum and mean aggregator may be similar when node features are multifarious and hardly repeat

2.6.4. Max-pooling learns sets with distinct elements

①Max aggregator focus on learning the structure of graph (原文用的"skeleton"而不是"structure"), and it has a certain ability to resist noise and outliers

②For max function , if and only if and have the same underlying set,

2.6.5. Remarks on other aggregators

①They do not cover the analysis of weighted average via attention or LSTM pooling

①Traditional GNN does not provide enough math explanation

②Exceptionally, RKHS of graph kernels (?) is able to approximate measurable functions in probability

③Also, they can hardly generalize to multple architectures

2.8. Experiments

(1)Datasets

①Dataset: 9 graph classification benchmarks: 4 bioinformatics datasets (MUTAG, PTC, NCI1, PROTEINS) and 5 social network datasets (COLLAB, IMDB-BINARY, IMDB-MULTI, REDDITBINARY and REDDIT-MULTI5K)

②Social networks are lack of node features, then they set node vectors as the same in REDDIT and use one hot encoding for others

(2)Mondels and configurations

①They set two variants, the one is GIN-ε, which adopts gradient descent, the other one is GIN-0, which is a little bit simpler.

②Performances of different variants on different datasets

③Validation: 10-fold LIB-SVM

④Layers: 5, includes input layer, and each MLP takes two layers

⑤Normalization: batch normalization for all hiden layers

⑥Optimizer: Adam

⑦Learning rate: 0.01 at first and substract 0.5/50 epochs

⑧Number of hidden units, hyper parameter: 16 or 32

⑨Batch size: 32 or 128

⑩Drop out ratio: 0 or 0.5

⑪Epoch: the best one in 10-fold

(3)Baselines

①WL subtree kernel

②Diffusionconvolutional neural networks (DCNN), PATCHY-SAN (Niepert) and Deep Graph CNN (DGCNN)

③Anonymous Walk Embeddings (AWL)

2.8.1. Results

(1)Training set performance

①Training set accuracy figure was showed above

②WL always performs better than GNN due to its strong classifying ability. However, WL can not present the node features combination, which may limit in the future

(2)Test set performance

①Test set classification accuracies

②GIN-0 obviously outperforms others

2.9. Conclusion

They give theoretical foundations of graph structure and discuss the performances of variants of GNN. Then, they designed a strong GNN, named GIN to achieve more accurate classification. Furthermore, they think researching the generalization for GNNs is also promising.

3. Reference List

Xu, K. et al. (2019) 'How Powerful are Graph Neural Networks?', ICLR 2019 . doi: https://doi.org/10.48550/arXiv.1810.00826

相关推荐
CoovallyAIHub2 分钟前
YOLOv8-SMOT:基于切片辅助训练与自适应运动关联的无人机视角小目标实时追踪框架
深度学习·算法·计算机视觉
嘟嘟喂嘟嘟吖8 分钟前
AI对口型唱演:科技赋能,开启虚拟歌者新篇章
人工智能·科技
点云兔子12 分钟前
使用RealSense相机和YOLO进行实时目标检测
深度学习·yolo
十二测试录12 分钟前
AI 驱动研发变革:技术突破与行业落地实践全景
人工智能·ai·aigc
CoovallyAIHub12 分钟前
全景式综述|多模态目标跟踪全面解析:方法、数据、挑战与未来
深度学习·算法·计算机视觉
张较瘦_20 分钟前
[论文阅读] 人工智能 + 软件工程 | 当AI成为文学研究员:Agentic DraCor如何用MCP解锁戏剧数据分析
论文阅读·人工智能·软件工程
Melody205023 分钟前
diffusion model(1.4) 相关论文阅读清单
人工智能
平行绳32 分钟前
啊?我的 Coze 触发器怎么没生效?答案在这里
人工智能·coze
云布道师43 分钟前
AI时代下阿里云基础设施的稳定性架构揭秘
人工智能·阿里云·架构
胡耀超1 小时前
机器学习数学基础与商业实践指南:从统计显著性到预测能力的认知升级
人工智能·python·机器学习·数据挖掘·数据分析·数据科学·统计学