[100天算法】-合并K个升序链表(day 56)

题目描述

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

 

示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
  1->4->5,
  1->3->4,
  2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:

输入:lists = []
输出:[]
示例 3:

输入:lists = [[]]
输出:[]
 

提示:

k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-k-sorted-lists
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

方法1:顺序合并

思路

21.合并两个有序链表 的基本思路是一样的,只不过每轮操作需要比较 k 个链表节点的值。

复杂度分析

  • 时间复杂度:O(k\*n),k 是链表个数,n 是合并后链表的长度。
  • 空间复杂度:O(1)

代码(JavaScript/C++)

JavaScript Code

复制代码
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode[]} lists
 * @return {ListNode}
 */
var mergeKLists = function (lists) {
    if (!lists || !lists.length) return null;

    let dummy = new ListNode();
    let tail = dummy;

    while (!isEmpty(lists)) {
        const min = getMin(lists);
        tail.next = new ListNode(min.val);
        tail = tail.next;
    }

    return dummy.next;

    // **********************************************
    function getMin(lists) {
        let minIndex = -1,
            minNode = new ListNode(Infinity);

        for (let i = 0; i < lists.length; i++) {
            const node = lists[i];
            if (node && node.val < minNode.val) {
                minNode = node;
                minIndex = i;
            }
        }

        lists[minIndex] = minNode.next;
        return minNode;
    }

    function isEmpty(lists) {
        return lists.every(n => n === null);
    }
};

C++ code

复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
private:
    bool isEmpty_(vector<ListNode*>& lists) {
        for (int i = 0; i < lists.size(); i++) {
            if (lists[i]) return false;
        }
        return true;
    }
    int getMinVal_(vector<ListNode*>& lists) {
        int ans = INT_MAX;
        int idx = -1;
        for (int i = 0; i < lists.size(); i++) {
            if (lists[i] && lists[i]->val < ans) {
                ans = lists[i]->val;
                idx = i;
            }
        }
        lists[idx] = lists[idx]->next;
        return ans;
    }

public:
    ListNode* mergeKLists(vector<ListNode*>& lists) {
        ListNode* dummy = new ListNode();
        ListNode* tail = dummy;

        while (!isEmpty_(lists)) {
            int min_val = getMinVal_(lists);
            tail->next = new ListNode(min_val);
            tail = tail->next;
        }

        return dummy->next;
    }
};

方法2:顺序合并+堆

思路

跟 方法1 思路一致,不过用了堆来寻找 k 个链表节点中的最小值。

复杂度分析

  • 时间复杂度:O(nlogk),k 是链表个数,n 是合并后链表的长度。
  • 空间复杂度:O(k),k 是链表个数,堆的空间大小。

代码

JavaScript Code

复制代码
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode[]} lists
 * @return {ListNode}
 */
var mergeKLists = function (lists) {
    if (!lists || !lists.length) return null;

    let dummy = new ListNode();
    let tail = dummy;

    const heap = new MinHeap(lists.filter(Boolean), function comparator(inserted, compared) {
        return inserted.val > compared.val;
    });

    while (heap.size() > 0) {
        const min = heap.pop();
        tail.next = new ListNode(min.val);
        tail = tail.next;
        min.next && heap.insert(min.next)
    }

    return dummy.next;
};

// **************************************************

class Heap {
    constructor(list = [], comparator) {
        this.list = list;
        this.comparator = comparator;

        this.init();
    }

    init() {
        const size = this.size();
        for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
            this.heapify(this.list, size, i);
        }
    }

    insert(n) {
        this.list.push(n);
        const size = this.size();
        for (let i = Math.floor(size / 2) - 1; i >= 0; i--) {
            this.heapify(this.list, size, i);
        }
    }

    peek() {
        return this.list[0];
    }

    pop() {
        const last = this.list.pop();
        if (this.size() === 0) return last;
        const returnItem = this.list[0];
        this.list[0] = last;
        this.heapify(this.list, this.size(), 0);
        return returnItem;
    }

    size() {
        return this.list.length;
    }
}

class MinHeap extends Heap {
    constructor(list, comparator) {
        if (typeof comparator != 'function') {
            comparator = function comparator(inserted, compared) {
                return inserted > compared;
            };
        }
        super(list, comparator);
    }

    heapify(arr, size, i) {
        let smallest = i;
        const left = Math.floor(i * 2 + 1);
        const right = Math.floor(i * 2 + 2);
        if (left < size && this.comparator(arr[smallest], arr[left]))
            smallest = left;
        if (right < size && this.comparator(arr[smallest], arr[right]))
            smallest = right;

        if (smallest !== i) {
            [arr[smallest], arr[i]] = [arr[i], arr[smallest]];
            this.heapify(arr, size, smallest);
        }
    }
}

方法3:分治

思路

  • 将 k 个链表平均分成两份,分别进行合并后,再将两个结果进行合并。
  • 最后一步就是简单的 合并两个有序链表
  • 而中间的步骤也很简单,只需要将 k/2 个链表再细分,再细分,细分到一次只需要处理两个链表就好了。

复杂度分析

  • 时间复杂度:O(nlogk),k 是链表个数,n 是合并后链表的长度。
  • 空间复杂度:O(k),k 是链表个数,堆的空间大小。

代码(JavaScript/C++)

JavaScript Code

复制代码
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode[]} lists
 * @return {ListNode}
 */
var mergeKLists = function(lists, start = 0, end = lists.length - 1) {
    if (start > end) return null;
    if (start === end) return lists[start];
    const mid = ((end - start) >> 1) + start;
    return mergeTwoLists(mergeKLists(lists, start, mid), mergeKLists(lists, mid + 1, end));
};

function mergeTwoLists(l1, l2) {
    if (!l1) return l2;
    if (!l2) return l1;

    if (l1.val < l2.val) {
        l1.next = mergeTwoLists(l1.next, l2);
        return l1;
    } else {
        l2.next = mergeTwoLists(l1, l2.next);
        return l2;
    }
}

C++ Code

复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeKLists(vector<ListNode*>& lists) {
        return mergeKLists(lists, 0, lists.size() - 1);
    }

    ListNode* mergeKLists(vector<ListNode*>& lists, int start, int end) {
        if (start > end) return nullptr;
        if (start == end) return lists[start];
        int m = (end - start) / 2 + start;
        return merge2Lists(mergeKLists(lists, start, m), mergeKLists(lists, m + 1, end));
    }

    ListNode* merge2Lists(ListNode* l1, ListNode* l2) {
        if (!l1) return l2;
        if (!l2) return l1;
        if (l1->val < l2->val) {
            l1->next = merge2Lists(l1->next, l2);
            return l1;
        } else {
            l2->next = merge2Lists(l1, l2->next);
            return l2;
        }
    }
};
相关推荐
好奇龙猫4 分钟前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_202440 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
ChoSeitaku1 小时前
链表交集相关算法题|AB链表公共元素生成链表C|AB链表交集存放于A|连续子序列|相交链表求交点位置(C)
数据结构·考研·链表
偷心编程1 小时前
双向链表专题
数据结构
香菜大丸1 小时前
链表的归并排序
数据结构·算法·链表
jrrz08281 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time1 小时前
golang学习2
算法
@小博的博客1 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
南宫生2 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步3 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝