Verilog刷题[hdlbits] :Module cseladd

题目:Module cseladd

One drawback of the ripple carry adder (See previous exercise) is that the delay for an adder to compute the carry out (from the carry-in, in the worst case) is fairly slow, and the second-stage adder cannot begin computing its carry-out until the first-stage adder has finished. This makes the adder slow. One improvement is a carry-select adder, shown below. The first-stage adder is the same as before, but we duplicate the second-stage adder, one assuming carry-in=0 and one assuming carry-in=1, then using a fast 2-to-1 multiplexer to select which result happened to be correct.

  • ripple carry adder(见之前的练习)的一个缺点是,加法器计算carry out(从carry-in,在最坏的情况下)的延迟相当慢,而第二阶段的加法器在第一阶段的加法器完成之前无法开始计算其carry out。这使得加法器变慢。一种改进是carry-select adder,如下所示。第一阶段的加法器与之前相同,但我们复制了第二阶段的加法器,一个假设carry-in=0,另一个假设carry-in=1,然后使用快速的2-to-1多路复用器选择哪个结果是正确的。

In this exercise, you are provided with the same module add16 as the previous exercise, which adds two 16-bit numbers with carry-in and produces a carry-out and 16-bit sum. You must instantiate three of these to build the carry-select adder, using your own 16-bit 2-to-1 multiplexer.

  • 在本练习中,您将使用与之前的练习相同的模块add16,该模块将两个16位数字与carry-in相加并产生一个carry-out和16位和。您必须实例化三个这样的模块来构建carry-select adder,使用您自己的16位2-to-1多路复用器。

Connect the modules together as shown in the diagram below. The provided module add16 has the following declaration:

  • 将模块按照下面的图示连接起来。提供的模块add16具有以下声明:
    module add16 ( input[15:0] a, input[15:0] b, input cin, output[15:0] sum, output cout );

在上一题Module fadd中,高16位的计算需要在得出进位信号后才能进行,这会使加法器变慢。同时由于进位信号只有0或1两种可能,所以在本题Module cseladd中,使用了两个add16来计算高16位的结果,并且这两个add16的进位信号cin分别为0和1。此时,在计算加法的计算步骤为,低16位相加(进位为0)、高16位相加(进位为0)与高16位加法(进位为1)三部分并行进行,再根据低16位相加得出的进位结果选取正确的高16位相加结果,进而得出最终答案。

objectivec 复制代码
module top_module(
    input [31:0] a,
    input [31:0] b,
    output [31:0] sum
);
	//进位信号
    wire cout;
    //存储 高16位相加(进位为0) 的结果
    wire [15:0] sum_high_1;
    //存储 高16位相加(进位为0) 的结果
    wire [15:0] sum_high_2;
	//低16位相加
	add16 add16_init_0( 
        .a(a[15:0]), 
        .b(b[15:0]),
        .cin(1'b0), 
        .sum(sum[15:0]), 
        .cout(cout) 
    );
    //高16位相加(进位为0)
	add16 add16_init_1( 
        .a(a[31:16]), 
        .b(b[31:16]),
        .cin(1'b0), 
        .sum(sum_high_1), 
        .cout() 
    );  
    //高16位相加(进位为1)
	add16 add16_init_2( 
        .a(a[31:16]), 
        .b(b[31:16]),
        .cin(1'b1), 
        .sum(sum_high_2), 
        .cout() 
    );  
	//根据进位结果选取正确的高16位运算结果
    assign  sum[31:16] = cout ? sum_high_2 : sum_high_1;
	    
endmodule
相关推荐
FakeOccupational15 小时前
fpga系列 HDL : Microchip FPGA开发软件 Libero 中导出和导入引脚约束配置
fpga开发
贝塔实验室18 小时前
LDPC 码的构造方法
算法·fpga开发·硬件工程·动态规划·信息与通信·信号处理·基带工程
Moonnnn.1 天前
【FPGA】时序逻辑计数器——仿真验证
fpga开发
三贝勒文子1 天前
Synopsys 逻辑综合之 ICG
fpga开发·eda·synopsys·时序综合
byte轻骑兵1 天前
【驱动设计的硬件基础】CPLD和FPGA
fpga开发·cpld
dadaobusi1 天前
看到一段SVA代码,让AI解释了一下
单片机·嵌入式硬件·fpga开发
G2突破手2591 天前
FMC、FMC+ 详解
fpga开发
fpga和matlab1 天前
FPGA时序约束分析4——Reg2Reg路径的建立时间与保持时间分析
fpga开发·reg2reg·建立时间·保持时间
高沉1 天前
2025华为海思数字IC面经
华为·fpga开发
伊宇韵1 天前
FPGA - GTX收发器-K码 以及 IBERT IP核使用
fpga开发