【ML】分类问题

分类问题

classification:根据已知样本特征,判断输入样本属于哪种已知样本类。

常用入门案例:垃圾邮件检测、图像分类、手写数字识别、考试通过预测。

分类问题和回归问题的明显区别:

分类问题的结果是非连续型标签,回归输出结果是连续型数值。

常用模型




相关推荐
黑客思维者9 小时前
机器学习001:从“让机器学会思考”到生活中的智能魔法
人工智能·机器学习·生活
黑客思维者9 小时前
机器学习006:监督学习【回归算法】(概论)--教AI从历史中预测未来
人工智能·学习·机器学习·监督学习·回归算法
高洁019 小时前
DNN案例一步步构建深层神经网络(二)
人工智能·python·深度学习·算法·机器学习
qq_418247889 小时前
Linux上部署conda环境
linux·运维·神经网络·机器学习·conda
Coding茶水间10 小时前
基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
老蒋新思维10 小时前
反脆弱性设计:创始人IP与AI智能体如何构建愈动荡愈强大的知识商业|创客匠人
人工智能·网络协议·tcp/ip·算法·机器学习·创始人ip·创客匠人
Salt_072810 小时前
DAY 36 官方文档的阅读
python·算法·机器学习·github
黑客思维者10 小时前
机器学习003:无监督学习(概论)--机器如何学会“自己整理房间”
人工智能·学习·机器学习·无监督学习
黑客思维者11 小时前
机器学习004:半监督学习-- 给AI一颗“举一反三”的大脑
人工智能·机器学习·半监督学习
黑客思维者11 小时前
机器学习005:强化学习(概论)--从“训练狗狗”到“打游戏”
人工智能·机器学习·强化学习