草稿纸1106

我继续在学习《ML Lecture 23-1: Deep Reinforcement Learning by Hung-yi Lee》中的视频教程https://youtu.be/W8XF3ME8G2I?si=zEQ3qj_iXzZZ-n85,其中提到:

"""
Gradient Ascent θ new ← θ old + η ∇ R ˉ θ old = ∑ t = 1 T ∇ log ⁡ p ( a t ∣ s t , θ ) ∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ o n ) ∇ log ⁡ ‾ p ( a t n ∣ s t n , θ ) \begin{aligned} & \begin{array}{l} \text { Gradient Ascent } \\ \theta^{\text {new }} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}{\theta^{\text {old }}} \end{array} \quad=\sum{t=1}^T \nabla \log p\left(a_t \mid s_t, \theta\right) \\ & \nabla \bar{R}\theta \approx \frac{1}{N} \sum{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_o^n\right) \nabla \underline{\log } p\left(a_t^n \mid s_t^n, \theta\right) \\ & \end{aligned} Gradient Ascent θnew ←θold +η∇Rˉθold =t=1∑T∇logp(at∣st,θ)∇Rˉθ≈N1n=1∑NR(τn)∇logP(τn∣θ)=N1n=1∑NR(τn)t=1∑Tn∇logp(atn∣stn,θ)=N1n=1∑Nt=1∑TnR(τon)∇logp(atn∣stn,θ)

"""

"这里的 Gradient Ascent 的微分是很符合人类直觉的, R ( τ n ) R\left(\tau^n\right) R(τn)为正则会提升获得此次胜利的过程中采取的每一次动作的概率;而 R ( τ n ) R\left(\tau^n\right) R(τn)为负,则会降低这些动作出现的概率",请问,这种说法正确吗

相关推荐
陈天伟教授17 分钟前
人工智能训练师认证教程(4)OpenCV 快速实践
人工智能·python·神经网络·opencv·机器学习·计算机视觉
音视频牛哥30 分钟前
【深度扫盲】音视频开发:拆解黑盒,从入门到精通的成长之路
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·超低延迟rtsp播放器·超低延迟rtmp播放器
_Li.38 分钟前
机器学习-非线性分类器 ANN
人工智能·机器学习
攻城狮-frank1 小时前
【机器学习】直观理解DPO与PPO:大模型优化的两种核心策略
人工智能·机器学习
黑客思维者1 小时前
机器学习009:监督学习【回归算法】(岭回归)-- 给模型一个“清醒”的约束
学习·机器学习·回归·监督学习·岭回归
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(20)manual_control demo
人工智能·机器学习·自动驾驶·carla
最晚的py1 小时前
聚类的评估方法
人工智能·算法·机器学习
高洁011 小时前
DNN案例一步步构建深层神经网络(3)
python·深度学习·算法·机器学习·transformer
啊巴矲1 小时前
小白从零开始勇闯人工智能:机器学习初级篇(线性回归与逻辑回归)
人工智能·机器学习·线性回归
deardao2 小时前
【时序异常检测综述】十年回顾:深入研究时间序列异常检测
人工智能·机器学习·时间序列·事件检测