草稿纸1106

我继续在学习《ML Lecture 23-1: Deep Reinforcement Learning by Hung-yi Lee》中的视频教程https://youtu.be/W8XF3ME8G2I?si=zEQ3qj_iXzZZ-n85,其中提到:

"""
Gradient Ascent θ new ← θ old + η ∇ R ˉ θ old = ∑ t = 1 T ∇ log ⁡ p ( a t ∣ s t , θ ) ∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ o n ) ∇ log ⁡ ‾ p ( a t n ∣ s t n , θ ) \begin{aligned} & \begin{array}{l} \text { Gradient Ascent } \\ \theta^{\text {new }} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}{\theta^{\text {old }}} \end{array} \quad=\sum{t=1}^T \nabla \log p\left(a_t \mid s_t, \theta\right) \\ & \nabla \bar{R}\theta \approx \frac{1}{N} \sum{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_o^n\right) \nabla \underline{\log } p\left(a_t^n \mid s_t^n, \theta\right) \\ & \end{aligned} Gradient Ascent θnew ←θold +η∇Rˉθold =t=1∑T∇logp(at∣st,θ)∇Rˉθ≈N1n=1∑NR(τn)∇logP(τn∣θ)=N1n=1∑NR(τn)t=1∑Tn∇logp(atn∣stn,θ)=N1n=1∑Nt=1∑TnR(τon)∇logp(atn∣stn,θ)

"""

"这里的 Gradient Ascent 的微分是很符合人类直觉的, R ( τ n ) R\left(\tau^n\right) R(τn)为正则会提升获得此次胜利的过程中采取的每一次动作的概率;而 R ( τ n ) R\left(\tau^n\right) R(τn)为负,则会降低这些动作出现的概率",请问,这种说法正确吗

相关推荐
Eloudy1 小时前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc
AEIC学术交流中心2 小时前
【快速EI检索 | SPIE出版】2026年机器学习与大模型国际学术会议(ICMLM 2026)
人工智能·机器学习
Daydream.V3 小时前
逻辑回归实例问题解决(LogisticRegression)
算法·机器学习·逻辑回归
纤纡.3 小时前
逻辑回归实战进阶:交叉验证与采样技术破解数据痛点(二)
算法·机器学习·逻辑回归
岱宗夫up3 小时前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
deep_drink4 小时前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
山居秋暝LS4 小时前
Padim模型参数
人工智能·机器学习
Rorsion4 小时前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习
CV@CV5 小时前
拆解自动驾驶核心架构——感知、决策、控制三层逻辑详解
人工智能·机器学习·自动驾驶
数智工坊5 小时前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵