草稿纸1106

我继续在学习《ML Lecture 23-1: Deep Reinforcement Learning by Hung-yi Lee》中的视频教程https://youtu.be/W8XF3ME8G2I?si=zEQ3qj_iXzZZ-n85,其中提到:

"""
Gradient Ascent θ new ← θ old + η ∇ R ˉ θ old = ∑ t = 1 T ∇ log ⁡ p ( a t ∣ s t , θ ) ∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ o n ) ∇ log ⁡ ‾ p ( a t n ∣ s t n , θ ) \begin{aligned} & \begin{array}{l} \text { Gradient Ascent } \\ \theta^{\text {new }} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}{\theta^{\text {old }}} \end{array} \quad=\sum{t=1}^T \nabla \log p\left(a_t \mid s_t, \theta\right) \\ & \nabla \bar{R}\theta \approx \frac{1}{N} \sum{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_o^n\right) \nabla \underline{\log } p\left(a_t^n \mid s_t^n, \theta\right) \\ & \end{aligned} Gradient Ascent θnew ←θold +η∇Rˉθold =t=1∑T∇logp(at∣st,θ)∇Rˉθ≈N1n=1∑NR(τn)∇logP(τn∣θ)=N1n=1∑NR(τn)t=1∑Tn∇logp(atn∣stn,θ)=N1n=1∑Nt=1∑TnR(τon)∇logp(atn∣stn,θ)

"""

"这里的 Gradient Ascent 的微分是很符合人类直觉的, R ( τ n ) R\left(\tau^n\right) R(τn)为正则会提升获得此次胜利的过程中采取的每一次动作的概率;而 R ( τ n ) R\left(\tau^n\right) R(τn)为负,则会降低这些动作出现的概率",请问,这种说法正确吗

相关推荐
硅谷秋水17 分钟前
π0.5:带开放世界泛化的视觉-语言-动作模型
人工智能·机器学习·计算机视觉·语言模型
搏博24 分钟前
机器学习之三:归纳学习
人工智能·深度学习·学习·机器学习
小墙程序员3 小时前
机器学习入门(七)PCA
机器学习
灏瀚星空3 小时前
从基础到实战的量化交易全流程学习:1.3 数学与统计学基础——概率与统计基础 | 基础概念
笔记·python·学习·金融·概率论
伊织code3 小时前
SKLearn - Biclustering
机器学习·支持向量机·聚类·sklearn·biclustering
搏博4 小时前
专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展
人工智能·python·深度学习·算法·机器学习·概率论
yzx9910134 小时前
决策树随机深林
人工智能·python·算法·决策树·机器学习
winner88814 小时前
论文解读:迁移学习(A Survey on Transfer Learning)
人工智能·机器学习·迁移学习
我是个菜鸡.4 小时前
视觉/深度学习/机器学习相关面经总结(2)(持续更新)
人工智能·深度学习·机器学习
痛&快乐着5 小时前
衡量矩阵数值稳定性的关键指标:矩阵的条件数
线性代数·矩阵