草稿纸1106

我继续在学习《ML Lecture 23-1: Deep Reinforcement Learning by Hung-yi Lee》中的视频教程https://youtu.be/W8XF3ME8G2I?si=zEQ3qj_iXzZZ-n85,其中提到:

"""
Gradient Ascent θ new ← θ old + η ∇ R ˉ θ old = ∑ t = 1 T ∇ log ⁡ p ( a t ∣ s t , θ ) ∇ R ˉ θ ≈ 1 N ∑ n = 1 N R ( τ n ) ∇ log ⁡ P ( τ n ∣ θ ) = 1 N ∑ n = 1 N R ( τ n ) ∑ t = 1 T n ∇ log ⁡ p ( a t n ∣ s t n , θ ) = 1 N ∑ n = 1 N ∑ t = 1 T n R ( τ o n ) ∇ log ⁡ ‾ p ( a t n ∣ s t n , θ ) \begin{aligned} & \begin{array}{l} \text { Gradient Ascent } \\ \theta^{\text {new }} \leftarrow \theta^{\text {old }}+\eta \nabla \bar{R}{\theta^{\text {old }}} \end{array} \quad=\sum{t=1}^T \nabla \log p\left(a_t \mid s_t, \theta\right) \\ & \nabla \bar{R}\theta \approx \frac{1}{N} \sum{n=1}^N R\left(\tau^n\right) \nabla \log P\left(\tau^n \mid \theta\right)=\frac{1}{N} \sum_{n=1}^N R\left(\tau^n\right) \sum_{t=1}^{T_n} \nabla \log p\left(a_t^n \mid s_t^n, \theta\right) \\ & =\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R\left(\tau_o^n\right) \nabla \underline{\log } p\left(a_t^n \mid s_t^n, \theta\right) \\ & \end{aligned} Gradient Ascent θnew ←θold +η∇Rˉθold =t=1∑T∇logp(at∣st,θ)∇Rˉθ≈N1n=1∑NR(τn)∇logP(τn∣θ)=N1n=1∑NR(τn)t=1∑Tn∇logp(atn∣stn,θ)=N1n=1∑Nt=1∑TnR(τon)∇logp(atn∣stn,θ)

"""

"这里的 Gradient Ascent 的微分是很符合人类直觉的, R ( τ n ) R\left(\tau^n\right) R(τn)为正则会提升获得此次胜利的过程中采取的每一次动作的概率;而 R ( τ n ) R\left(\tau^n\right) R(τn)为负,则会降低这些动作出现的概率",请问,这种说法正确吗

相关推荐
ARM+FPGA+AI工业主板定制专家1 小时前
基于GPS/PTP/gPTP的自动驾驶数据同步授时方案
人工智能·机器学习·自动驾驶
lisw056 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
学Linux的语莫6 小时前
机器学习数据处理
java·算法·机器学习
递归不收敛8 小时前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.3 特征工程与模型优化
pytorch·学习·机器学习
B站_计算机毕业设计之家10 小时前
机器学习实战项目:Python+Flask 汽车销量分析可视化系统(requests爬车主之家+可视化 源码+文档)✅
人工智能·python·机器学习·数据分析·flask·汽车·可视化
lucky_syq13 小时前
解锁特征工程:机器学习的秘密武器
人工智能·机器学习
CM莫问13 小时前
推荐算法之粗排
深度学习·算法·机器学习·数据挖掘·排序算法·推荐算法·粗排
rengang6613 小时前
10-支持向量机(SVM):讲解基于最大间隔原则的分类算法
人工智能·算法·机器学习·支持向量机
on_pluto_15 小时前
LLaMA: Open and Efficient Foundation Language Models 论文阅读
python·机器学习
antonytyler15 小时前
认识机器学习
机器学习