Pandas数据分析Pandas进阶在线闯关_头歌实践教学平台

Pandas数据分析进阶

  • [第1关 Pandas 分组聚合](#第1关 Pandas 分组聚合)
  • [第2关 Pandas 创建透视表和交叉表](#第2关 Pandas 创建透视表和交叉表)

第1关 Pandas 分组聚合

任务描述

本关任务:使用 Pandas 加载 drinks.csv 文件中的数据,根据数据信息求每个大洲红酒消耗量的最大值与最小值的差以及啤酒消耗量的和。

编程要求

使用 Pandas 中的 read_csv() 函数读取 step1/drinks.csv 中的数据,数据的列名如下表所示,请根据 continent 分组并求每个大洲红酒消耗量的最大值与最小值的差以及啤酒消耗量的和。在右侧编辑器 Begin-End 内补充代码。

测试说明

平台会对你编写的代码进行测试:

测试输入:无;

预期输出:

开始你的任务吧,祝你成功!

python 复制代码
import pandas as pd
import numpy as np

#返回最大值与最小值的差
def sub(df):
    ######## Begin #######
    return df.max()-df.min()
    ######## End #######

def main():
    ######## Begin #######
    data = pd.read_csv("step1/drinks.csv",header = 0)
    df = pd.DataFrame(data)
    mapping = {"wine_servings":sub,"beer_servings":np.sum}
    print(df.groupby("continent").agg(mapping))


    ######## End #######

if __name__ == '__main__':
    main()

第2关 Pandas 创建透视表和交叉表

任务描述

本关任务:使用 Pandas 加载 tip.csv 文件中的数据集,分别用透视表和交叉表统计顾客在每种用餐时间、每个星期下的小费总和情况。

编程要求

使用 Pandas 中的 read_csv 函数加载 step2/tip.csv 文件中的数据集,分别用透视表和交叉表统计顾客在每种用餐时间(time) 、每个星期下(day) 的 小费(tip)总和情况。在右侧编辑器 Begin-End 内补充代码。

数据集列名信息如下表:

测试说明

平台会对你编写的代码进行测试:

测试输入:无;

预期输出:

开始你的任务吧,祝你成功!

python 复制代码
#-*- coding: utf-8 -*-
import pandas as pd

#创建透视表
def create_pivottalbe(data):
    ###### Begin ######
    df = pd.DataFrame(data)
    x = df.pivot_table(index = ['day'],columns = ['time'],values = ['tip'],aggfunc = sum , margins = True)
    return x
    ###### End ######

#创建交叉表
def create_crosstab(data):
    ###### Begin ######
    df = pd.DataFrame(data)  
    y = pd.crosstab(index = df['day'],columns = df['time'],values = df['tip'],aggfunc =sum,margins = True)
    return y
    ###### End ######

def main():
    #读取csv文件数据并赋值给data
    ###### Begin ######
    data = pd.read_csv("step2/tip.csv",header = 0)
    ###### End ######
    piv_result = create_pivottalbe(data)
    cro_result = create_crosstab(data)
    print("透视表:\n{}".format(piv_result))
    print("交叉表:\n{}".format(cro_result))

if __name__ == '__main__':
    main()
相关推荐
阿拉丁的梦21 分钟前
【maxscript】矩阵对齐-武器残影
python·3dsmax
mortimer23 分钟前
Python 异常处理进阶:从 `traceback` 细节到稳健的多语言处理器
python
和鲸社区41 分钟前
四大经典案例,入门AI算法应用,含分类、回归与特征工程|2025人工智能实训季初阶赛
人工智能·python·深度学习·算法·机器学习·分类·回归
piaopiaolanghua2 小时前
PyCharm旧版本下载地址
ide·python·pycharm
云天徽上2 小时前
【数据可视化-111】93大阅兵后的军费开支情况———2024年全球军费开支分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·pyecharts
胖达不服输2 小时前
「日拱一码」087 机器学习——SPARROW
人工智能·python·机器学习·sparrow
人大博士的交易之路3 小时前
今日行情明日机会——20250912
大数据·数据挖掘·数据分析·缠论·缠中说禅·涨停回马枪·道琼斯结构
GilgameshJSS3 小时前
【学习K230-例程21】GT6700-UDP-Client
网络·python·单片机·网络协议·学习·udp
FriendshipT3 小时前
Nuitka 将 Python 脚本封装为 .pyd 或 .so 文件
开发语言·python
她说人狗殊途4 小时前
动态代理1
开发语言·python