Pandas数据分析Pandas进阶在线闯关_头歌实践教学平台

Pandas数据分析进阶

  • [第1关 Pandas 分组聚合](#第1关 Pandas 分组聚合)
  • [第2关 Pandas 创建透视表和交叉表](#第2关 Pandas 创建透视表和交叉表)

第1关 Pandas 分组聚合

任务描述

本关任务:使用 Pandas 加载 drinks.csv 文件中的数据,根据数据信息求每个大洲红酒消耗量的最大值与最小值的差以及啤酒消耗量的和。

编程要求

使用 Pandas 中的 read_csv() 函数读取 step1/drinks.csv 中的数据,数据的列名如下表所示,请根据 continent 分组并求每个大洲红酒消耗量的最大值与最小值的差以及啤酒消耗量的和。在右侧编辑器 Begin-End 内补充代码。

测试说明

平台会对你编写的代码进行测试:

测试输入:无;

预期输出:

开始你的任务吧,祝你成功!

python 复制代码
import pandas as pd
import numpy as np

#返回最大值与最小值的差
def sub(df):
    ######## Begin #######
    return df.max()-df.min()
    ######## End #######

def main():
    ######## Begin #######
    data = pd.read_csv("step1/drinks.csv",header = 0)
    df = pd.DataFrame(data)
    mapping = {"wine_servings":sub,"beer_servings":np.sum}
    print(df.groupby("continent").agg(mapping))


    ######## End #######

if __name__ == '__main__':
    main()

第2关 Pandas 创建透视表和交叉表

任务描述

本关任务:使用 Pandas 加载 tip.csv 文件中的数据集,分别用透视表和交叉表统计顾客在每种用餐时间、每个星期下的小费总和情况。

编程要求

使用 Pandas 中的 read_csv 函数加载 step2/tip.csv 文件中的数据集,分别用透视表和交叉表统计顾客在每种用餐时间(time) 、每个星期下(day) 的 小费(tip)总和情况。在右侧编辑器 Begin-End 内补充代码。

数据集列名信息如下表:

测试说明

平台会对你编写的代码进行测试:

测试输入:无;

预期输出:

开始你的任务吧,祝你成功!

python 复制代码
#-*- coding: utf-8 -*-
import pandas as pd

#创建透视表
def create_pivottalbe(data):
    ###### Begin ######
    df = pd.DataFrame(data)
    x = df.pivot_table(index = ['day'],columns = ['time'],values = ['tip'],aggfunc = sum , margins = True)
    return x
    ###### End ######

#创建交叉表
def create_crosstab(data):
    ###### Begin ######
    df = pd.DataFrame(data)  
    y = pd.crosstab(index = df['day'],columns = df['time'],values = df['tip'],aggfunc =sum,margins = True)
    return y
    ###### End ######

def main():
    #读取csv文件数据并赋值给data
    ###### Begin ######
    data = pd.read_csv("step2/tip.csv",header = 0)
    ###### End ######
    piv_result = create_pivottalbe(data)
    cro_result = create_crosstab(data)
    print("透视表:\n{}".format(piv_result))
    print("交叉表:\n{}".format(cro_result))

if __name__ == '__main__':
    main()
相关推荐
F_D_Z1 小时前
数据集相关类代码回顾理解 | StratifiedShuffleSplit\transforms.ToTensor\Counter
python·torchvision·transforms
tao3556672 小时前
【Python刷力扣hot100】283. Move Zeroes
开发语言·python·leetcode
RE-19012 小时前
Excel基础知识 - 导图笔记
数据分析·学习笔记·excel·思维导图·基础知识·函数应用
小宁爱Python3 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
湖南人爱科技有限公司3 小时前
RaPhp和Python某音最新bd-ticket-guard-client-data加密算法解析(视频评论)
android·python·php·音视频·爬山算法·raphp
eqwaak04 小时前
数据预处理与可视化流水线:Pandas Profiling + Altair 实战指南
开发语言·python·信息可视化·数据挖掘·数据分析·pandas
心态特好5 小时前
详解WebSocket及其妙用
java·python·websocket·网络协议
dlraba8026 小时前
用 Python+OpenCV 实现实时文档扫描:从摄像头捕捉到透视矫正全流程
开发语言·python·opencv
小熊出擊6 小时前
【pytest】fixture 内省(Introspection)测试上下文
python·单元测试·pytest
njsgcs6 小时前
sse mcp flask 开放mcp服务到内网
后端·python·flask·sse·mcp