pytorch与cudatoolkit,cudnn对应关系及安装相应的版本

文章目录

一.cuda安装

1.确定当前平台cuda可以安装的版本

安装好显卡驱动后,使用nvidia-smi命令可以查看这个显卡驱动可以安装的最高的cuda版本是多少,如下:

Driver Version: 525.89.02 表明当前显卡驱动版本是525.89.02

CUDA Version: 12.0 表明当前的显卡驱动可以安装的cuda最高版本是12.0

二、nvidia 驱动和cuda runtime 版本对应关系

官网:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

从驱动和运行时的版本对应关系来看,版本为384.81的驱动程序 对应的 运行时版本是9.0,也就是说我们在python中安装cudatoolkit和cudnn程序包版本9.2是过高了。

因为系统中依赖GPU驱动的程序比较多,一般出现这种情况,我们都是更改cudatoolkit和cudnn程序包的版本。

于是,先卸载python中安装cudatoolkit和cudnn程序包:pip uninstall cudnn ; pip uninstall cudatoolkit

然后安装对应版本的cudatoolkit和cudnn程序包:pip install cudatoolkit=9.0;pip install cudnn

三、安装cudatoolkit,cudnn对应版本

安装cudatoolkit(针对服务器权限不能安装的情况)

c 复制代码
conda search cudatoolkit --info

conda search cudnn --info

查看所有列出来的cudatoolkit的详细信息,包括版本号version,文件网址url,依赖项dependencies。

直接conda install cudatoolkit,通常下载安装包的速度很慢,当换源都不好使的时候,因而可以用上面给出的文件网址url来用下载工具去下载这个包,再去本地安装

依赖项dependencies:想要使用cudatoolkit,还需要安装什么才可以使用。

本地安装离线包的命令是:

bash 复制代码
conda install --use-local 包名

cudnn同理。

四、cuda11.2版本的对应安装的pytorch版本及安装

cu112,可安装cu111版本

访问官网:https://pytorch.org/get-started/previous-versions/

找到合适的版本的torch及torchvision、torchaudio

使用pip3安装

c 复制代码
 pip3 install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html

五、相关参考

Tensorflow与Python、CUDA、cuDNN的版本对应表

https://blog.csdn.net/ly869915532/article/details/124542362

使用虚拟环境conda安装不同版本的cuda,cudnn,pytorch

https://blog.csdn.net/qq_42537872/article/details/132322398?spm=1001.2101.3001.6650.2\&utm_medium=distribute.pc_relevant.none-task-blog-2~default~YuanLiJiHua~Position-2-132322398-blog-131769640.235^v38^pc_relevant_anti_t3_base\&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~YuanLiJiHua~Position-2-132322398-blog-131769640.235^v38^pc_relevant_anti_t3_base\&utm_relevant_index=5

Anaconda的python虚拟环境中安装cudatoolkit和cudnn加速tensorflow

https://blog.csdn.net/qq_33221533/article/details/131769640

NVIDIA驱动版本与CUDA版本对应关系

https://blog.csdn.net/qq_33401821/article/details/123246774

相关推荐
陈鋆24 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot24 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323725 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323726 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker38 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客44 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf21 小时前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟1 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人1 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化