pytorch与cudatoolkit,cudnn对应关系及安装相应的版本

文章目录

一.cuda安装

1.确定当前平台cuda可以安装的版本

安装好显卡驱动后,使用nvidia-smi命令可以查看这个显卡驱动可以安装的最高的cuda版本是多少,如下:

Driver Version: 525.89.02 表明当前显卡驱动版本是525.89.02

CUDA Version: 12.0 表明当前的显卡驱动可以安装的cuda最高版本是12.0

二、nvidia 驱动和cuda runtime 版本对应关系

官网:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

从驱动和运行时的版本对应关系来看,版本为384.81的驱动程序 对应的 运行时版本是9.0,也就是说我们在python中安装cudatoolkit和cudnn程序包版本9.2是过高了。

因为系统中依赖GPU驱动的程序比较多,一般出现这种情况,我们都是更改cudatoolkit和cudnn程序包的版本。

于是,先卸载python中安装cudatoolkit和cudnn程序包:pip uninstall cudnn ; pip uninstall cudatoolkit

然后安装对应版本的cudatoolkit和cudnn程序包:pip install cudatoolkit=9.0;pip install cudnn

三、安装cudatoolkit,cudnn对应版本

安装cudatoolkit(针对服务器权限不能安装的情况)

c 复制代码
conda search cudatoolkit --info

conda search cudnn --info

查看所有列出来的cudatoolkit的详细信息,包括版本号version,文件网址url,依赖项dependencies。

直接conda install cudatoolkit,通常下载安装包的速度很慢,当换源都不好使的时候,因而可以用上面给出的文件网址url来用下载工具去下载这个包,再去本地安装

依赖项dependencies:想要使用cudatoolkit,还需要安装什么才可以使用。

本地安装离线包的命令是:

bash 复制代码
conda install --use-local 包名

cudnn同理。

四、cuda11.2版本的对应安装的pytorch版本及安装

cu112,可安装cu111版本

访问官网:https://pytorch.org/get-started/previous-versions/

找到合适的版本的torch及torchvision、torchaudio

使用pip3安装

c 复制代码
 pip3 install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html

五、相关参考

Tensorflow与Python、CUDA、cuDNN的版本对应表

https://blog.csdn.net/ly869915532/article/details/124542362

使用虚拟环境conda安装不同版本的cuda,cudnn,pytorch

https://blog.csdn.net/qq_42537872/article/details/132322398?spm=1001.2101.3001.6650.2\&utm_medium=distribute.pc_relevant.none-task-blog-2~default~YuanLiJiHua~Position-2-132322398-blog-131769640.235^v38^pc_relevant_anti_t3_base\&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~YuanLiJiHua~Position-2-132322398-blog-131769640.235^v38^pc_relevant_anti_t3_base\&utm_relevant_index=5

Anaconda的python虚拟环境中安装cudatoolkit和cudnn加速tensorflow

https://blog.csdn.net/qq_33221533/article/details/131769640

NVIDIA驱动版本与CUDA版本对应关系

https://blog.csdn.net/qq_33401821/article/details/123246774

相关推荐
好开心啊没烦恼19 分钟前
Python 数据分析:DataFrame,生成,用字典创建 DataFrame ,键值对数量不一样怎么办?
开发语言·python·数据挖掘·数据分析
AIbase202424 分钟前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
周树皮不皮1 小时前
20250704【翻转&二叉树】|Leetcodehot100之226【pass】&今天计划
python
魔芋红茶1 小时前
spring-initializer
python·学习·spring
喜欢吃豆1 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion1 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径
一个天蝎座 白勺 程序猿1 小时前
Python(28)Python循环语句指南:从语法糖到CPython字节码的底层探秘
开发语言·python
zskj_zhyl1 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
创小匠1 小时前
创客匠人视角下创始人 IP 打造与知识变现的底层逻辑重构
人工智能·tcp/ip·重构