统计学习笔记 第 5 部分:破碎系数

照片由 Unsplash上的 资源数据库提供

1:背景与动机

正如本系列之前的文章所述,统计学习理论为理解机器学习推理问题提供了一个概率框架。用数学术语来说,统计学习理论的基本目标可以表述为:

图片由作者提供

本文是统计学习理论系列的第 5 部分。前四件是:

在本系列的第 1 部分中,我们从第一原理推导了霍夫丁不等式,在第 2 部分中,我们证明了贝叶斯分类器的最优性,在第 3 部分中,我们开发了评估数据自适应机器学习采样估计器一致性的理论,在第4 部分中,我们推导了一致性有限大小函数类上的 ML 估计器的速率和泛化界限。在这篇文章中,我们将我们的理论扩展到无限大小函数类上的学习 ML 估计器,并利用破碎系数导出一致性率和泛化界限。

为了激发当前的兴趣问题,请考虑:

图片由作者提供

我们定义:

图片由作者提供

并回忆一下:

图片由作者提供
图片由作者提供

但是,如果我们考虑无限大小的函数类而不是有限的函数类怎么办?比如所有线性模型的函数类?在这种情况下,我们还有一致性吗?

在接下来的注释中,我们利用破碎系数推导了无限函数类上的 ML 估计器的不等式、比率和泛化界限。
图片由作者提供

本文的目录如下:
图片由作者提供

话虽如此,让我们开始吧。

2:破碎系数

2.1:破碎系数的定义

我们想要测量无限函数类的容量。破碎系数是此类容量测量中最简单的。
图片由作者提供

让我们通过一些简单的玩具示例来了解破碎系数的示例。

2.2:玩具示例#1

图片由作者提供

2.3:玩具示例#2

图片由作者提供

2.4:玩具示例#3

图片由作者提供

3:通过幽灵样本得出统计不平等

从本系列第 4 部分中的统计不平等开始:
图片由作者提供

我们将在本节中证明上述不等式右侧的进一步约束如下:
图片由作者提供

为了证明上述统计不等式,我们首先证明以下中间结果,稍后我们将利用:
图片由作者提供

上述中间结果的证明如下:
图片由作者提供

图片由作者提供

我们现在准备证明:
图片由作者提供

上述不等式的证明如下:
图片由作者提供

使用上面的统计不等式,在下一节中,我们利用破碎系数检查泛化界限和一致性率。

4:泛化界限和一致性率

根据上一节的结果,我们现在准备展示:
图片由作者提供

上述泛化界限的证明如下:
图片由作者提供

图片由作者提供

图片由作者提供

5:总结和结论

图片由作者提供

请注意,虽然我们能够导出无限大小函数类上的 ML 估计器的泛化界限和一致性率,但本文中的方法存在一些缺点。主要是:

  • 除了简单的玩具示例之外,破碎系数通常很难计算或计算。
  • 破碎系数也是特定样本大小" n "的函数,这意味着我们需要知道该系数渐近增长的速度,以便将其用于本文中使用的目的。

在本系列的后续第 6 部分中,我们将利用另一个工具来导出无限大小函数类的容量,即 Vapnik-Chervonenkis (VC) 维度。正如我们将在下一篇文章中看到的,对于某些用例,VC 维度比破碎系数更容易计算。与破碎系数不同,VC 维度不依赖于样本大小" n "。

为了参考扎实的统计学习理论内容,我会推荐Larry Wasserman(卡内基梅隆大学统计和机器学习教授)的教科书"All of Statistics"和"All of Nonparametric Statistics"、斯坦福大学教师的" Elements of Statistical Learning "和"Statistical"弗拉基米尔·瓦普尼克(Vladimir Vapnik)的学习理论

安德鲁·罗斯曼

相关推荐
我是小哪吒2.08 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉030712 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻1 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901061 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
蓝婷儿1 小时前
Python 机器学习核心入门与实战进阶 Day 2 - KNN(K-近邻算法)分类实战与调参
python·机器学习·近邻算法
云卓SKYDROID2 小时前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID2 小时前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力2 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人3 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法3 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉