关于卷积神经网络的多通道

多通道输入

当输入的数据包含多个通道时,我们需要构造一个与输入通道数相同通道数的卷积核,从而能够和输入数据做卷积运算。 假设输入的形状为n∗n,通道数为ci​,卷积核的形状为f∗f,此时,每一个输入通道都应该分配一个形状为f∗f的卷积核,所以卷积核的形状可以表示为ci​∗f∗f。

从上图的实例中可以看出,多通道输入的计算方法就是单独计算每个通道中卷积的结果,再将不同通道得到的结果对应相加到一个通道,得到输出的结果。

多通道输出

当输入通道有多个时,我们增加了卷积核的通道数,并对结果进行了累加,这样不论输入通道数为多少,输出通道数都为1。所以如果我们需要增加输出的通道,就可以增加多个多通道的卷积核,每一个多通道的卷积核可以获得一个通道的输出,这样就可以获得多通道输出了。 假设卷积核的输入通道数和输出通道数分别为ci​co​,如果想要得到含多个通道的的输出,我们可以为每个输出分别创建一个形状为ci​∗f∗f的卷积核,然后在输出通道上将结果连接起来,就可以得到多通道的输出,最终卷积核的形状就是co​∗ci​∗f∗f

如何调用 Pytorch 中的多通道输入和输出

nn.Conv2d()中的参数in_channelsout_channels就是用于控制卷积层的输入通道数和输出通道数。

复制代码
nn.Conv2d(1, 6, 5) # in_channels, out_channels, kernel_size
复制代码
    上方这个示例中就定义了最简单的卷积层,其中in_channels=1,out_channels=6。

习题

因为输出ci输入co分别为3、10,所以卷积核的深度为3x10,卷积核的w和h需要根据步幅和填充确定。已知输入输出形状wh不变,由公式 (n-f+2p)/s+1 = n 得到(24 - 3 + 1*2)/1 + 1 = 24 与c选项一致

相关推荐
k***19520 分钟前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
Techblog of HaoWANG1 小时前
目标检测与跟踪 (4)- 基于YOLOv8的工业仪器仪表智能读数与状态检测算法实
人工智能·视觉检测·智能制造·yolov8·工业检测·指针式仪表·仪器仪表检测
1***Q7841 小时前
深度学习技术
人工智能·深度学习
KKKlucifer1 小时前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全1 小时前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖2 小时前
这个Q3,百度开始AI
人工智能·百度
Leinwin2 小时前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure
Q***f6352 小时前
机器学习书籍
人工智能·机器学习
小毅&Nora2 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构
D***t1312 小时前
DeepSeek模型在自然语言处理中的创新应用
人工智能·自然语言处理