关于卷积神经网络的多通道

多通道输入

当输入的数据包含多个通道时,我们需要构造一个与输入通道数相同通道数的卷积核,从而能够和输入数据做卷积运算。 假设输入的形状为n∗n,通道数为ci​,卷积核的形状为f∗f,此时,每一个输入通道都应该分配一个形状为f∗f的卷积核,所以卷积核的形状可以表示为ci​∗f∗f。

从上图的实例中可以看出,多通道输入的计算方法就是单独计算每个通道中卷积的结果,再将不同通道得到的结果对应相加到一个通道,得到输出的结果。

多通道输出

当输入通道有多个时,我们增加了卷积核的通道数,并对结果进行了累加,这样不论输入通道数为多少,输出通道数都为1。所以如果我们需要增加输出的通道,就可以增加多个多通道的卷积核,每一个多通道的卷积核可以获得一个通道的输出,这样就可以获得多通道输出了。 假设卷积核的输入通道数和输出通道数分别为ci​co​,如果想要得到含多个通道的的输出,我们可以为每个输出分别创建一个形状为ci​∗f∗f的卷积核,然后在输出通道上将结果连接起来,就可以得到多通道的输出,最终卷积核的形状就是co​∗ci​∗f∗f

如何调用 Pytorch 中的多通道输入和输出

nn.Conv2d()中的参数in_channelsout_channels就是用于控制卷积层的输入通道数和输出通道数。

复制代码
nn.Conv2d(1, 6, 5) # in_channels, out_channels, kernel_size
复制代码
    上方这个示例中就定义了最简单的卷积层,其中in_channels=1,out_channels=6。

习题

因为输出ci输入co分别为3、10,所以卷积核的深度为3x10,卷积核的w和h需要根据步幅和填充确定。已知输入输出形状wh不变,由公式 (n-f+2p)/s+1 = n 得到(24 - 3 + 1*2)/1 + 1 = 24 与c选项一致

相关推荐
好奇龙猫28 分钟前
【AI学习-comfyUI学习-第十九节-comtrolnet艺术线处理器工作流-各个部分学习】
人工智能·学习
老蒋新思维1 小时前
从「流量算法」到「增长算法」:AI智能体如何重构企业增长的内在逻辑
大数据·网络·人工智能·重构·创始人ip·创客匠人·知识变现
苍何1 小时前
在全世界都教你做小红书图片的时候,我基于秒哒Pro做了个一键生成的网站。
人工智能
苍何1 小时前
用即梦视频3.5pro复刻爆款AI探班视频,直接发现一个AI片场!
人工智能
dulu~dulu1 小时前
机器学习题目总结(一)
人工智能·神经网络·决策树·机器学习·学习笔记·线性模型·模型评估与选择
苍何1 小时前
免费!漫画 PPT + 全文档讲解,这谁顶得住啊。。。
人工智能
苍何1 小时前
用 LiblibAI 做爆款动态海报,绝了!(附教程)
人工智能
翔云 OCR API1 小时前
承兑汇票识别接口技术解析与应用实践
开发语言·人工智能·python·计算机视觉·ocr
苍何1 小时前
终于找到可以一键做 AI 漫剧的方法了
人工智能
Parasoft中国1 小时前
聚焦汽车网安落地!2026汽车网络安全标准及应用研讨会
人工智能·测试工具·安全·web安全·汽车