关于卷积神经网络的多通道

多通道输入

当输入的数据包含多个通道时,我们需要构造一个与输入通道数相同通道数的卷积核,从而能够和输入数据做卷积运算。 假设输入的形状为n∗n,通道数为ci​,卷积核的形状为f∗f,此时,每一个输入通道都应该分配一个形状为f∗f的卷积核,所以卷积核的形状可以表示为ci​∗f∗f。

从上图的实例中可以看出,多通道输入的计算方法就是单独计算每个通道中卷积的结果,再将不同通道得到的结果对应相加到一个通道,得到输出的结果。

多通道输出

当输入通道有多个时,我们增加了卷积核的通道数,并对结果进行了累加,这样不论输入通道数为多少,输出通道数都为1。所以如果我们需要增加输出的通道,就可以增加多个多通道的卷积核,每一个多通道的卷积核可以获得一个通道的输出,这样就可以获得多通道输出了。 假设卷积核的输入通道数和输出通道数分别为ci​co​,如果想要得到含多个通道的的输出,我们可以为每个输出分别创建一个形状为ci​∗f∗f的卷积核,然后在输出通道上将结果连接起来,就可以得到多通道的输出,最终卷积核的形状就是co​∗ci​∗f∗f

如何调用 Pytorch 中的多通道输入和输出

nn.Conv2d()中的参数in_channelsout_channels就是用于控制卷积层的输入通道数和输出通道数。

复制代码
nn.Conv2d(1, 6, 5) # in_channels, out_channels, kernel_size
复制代码
    上方这个示例中就定义了最简单的卷积层,其中in_channels=1,out_channels=6。

习题

因为输出ci输入co分别为3、10,所以卷积核的深度为3x10,卷积核的w和h需要根据步幅和填充确定。已知输入输出形状wh不变,由公式 (n-f+2p)/s+1 = n 得到(24 - 3 + 1*2)/1 + 1 = 24 与c选项一致

相关推荐
莫叫石榴姐10 分钟前
数据开发需求工时如何评估?
大数据·数据仓库·人工智能·数据分析·产品运营
查无此人byebye13 分钟前
实战DDPM扩散模型:MNIST手写数字生成+FID分数计算(完整可运行版)
人工智能·pytorch·python·深度学习·音视频
人工智能研究所14 分钟前
专为 AI 编程而生,智谱发布 GLM-4.7 模型:更强的 AI Coding
人工智能·glm-4.7·智谱 ai
冬奇Lab14 分钟前
一天一个开源项目(第22篇):nanochat - 百元级「最好的 ChatGPT」,Karpathy 的极简 LLM 训练套件
人工智能·gpt·chatgpt
曦云沐16 分钟前
AI 编程助手三强争霸:OpenCode vs Claude Code vs Kimi Code CLI 深度对比
人工智能·claude code·kimi code·open code
来两个炸鸡腿23 分钟前
【Datawhale组队学习202602】Easy-Vibe task02 认识AI IDE工具
ide·人工智能·学习·大模型
Deepoch32 分钟前
Deepoc具身模型开发板:赋能无人机智能升级,实现自主高效作业
人工智能·科技·机器人·无人机·具身模型·deepoc·无人机爱好者
AI周红伟36 分钟前
周红伟:SeedDance 2技术架构和技术原理
人工智能·深度学习·算法
LaughingZhu36 分钟前
Product Hunt 每日热榜 | 2026-02-13
大数据·人工智能·经验分享·搜索引擎·产品运营
企业智能研究1 小时前
2026,企业如何应用AI Agent赋能业务?
人工智能·云计算·agent