关于卷积神经网络的多通道

多通道输入

当输入的数据包含多个通道时,我们需要构造一个与输入通道数相同通道数的卷积核,从而能够和输入数据做卷积运算。 假设输入的形状为n∗n,通道数为ci​,卷积核的形状为f∗f,此时,每一个输入通道都应该分配一个形状为f∗f的卷积核,所以卷积核的形状可以表示为ci​∗f∗f。

从上图的实例中可以看出,多通道输入的计算方法就是单独计算每个通道中卷积的结果,再将不同通道得到的结果对应相加到一个通道,得到输出的结果。

多通道输出

当输入通道有多个时,我们增加了卷积核的通道数,并对结果进行了累加,这样不论输入通道数为多少,输出通道数都为1。所以如果我们需要增加输出的通道,就可以增加多个多通道的卷积核,每一个多通道的卷积核可以获得一个通道的输出,这样就可以获得多通道输出了。 假设卷积核的输入通道数和输出通道数分别为ci​co​,如果想要得到含多个通道的的输出,我们可以为每个输出分别创建一个形状为ci​∗f∗f的卷积核,然后在输出通道上将结果连接起来,就可以得到多通道的输出,最终卷积核的形状就是co​∗ci​∗f∗f

如何调用 Pytorch 中的多通道输入和输出

nn.Conv2d()中的参数in_channelsout_channels就是用于控制卷积层的输入通道数和输出通道数。

复制代码
nn.Conv2d(1, 6, 5) # in_channels, out_channels, kernel_size
复制代码
    上方这个示例中就定义了最简单的卷积层,其中in_channels=1,out_channels=6。

习题

因为输出ci输入co分别为3、10,所以卷积核的深度为3x10,卷积核的w和h需要根据步幅和填充确定。已知输入输出形状wh不变,由公式 (n-f+2p)/s+1 = n 得到(24 - 3 + 1*2)/1 + 1 = 24 与c选项一致

相关推荐
东方不败之鸭梨的测试笔记19 分钟前
测试工程师如何利用AI大模型?
人工智能
智能化咨询23 分钟前
(68页PPT)埃森哲XX集团用户主数据治理项目汇报方案(附下载方式)
大数据·人工智能
说私域31 分钟前
分享经济应用:以“开源链动2+1模式AI智能名片S2B2C商城小程序”为例
人工智能·小程序·开源
工业机器视觉设计和实现31 分钟前
我的第三个cudnn程序(cifar10改cifar100)
人工智能·深度学习·机器学习
熊猫钓鱼>_>34 分钟前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
Altair澳汰尔43 分钟前
成功案例丨仿真+AI技术为快消包装行业赋能提速:基于 AI 的轻量化设计节省数十亿美元
人工智能·ai·仿真·cae·消费品·hyperworks·轻量化设计
祝余Eleanor1 小时前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮1 小时前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
也许是_1 小时前
大模型应用技术之提示词高阶技巧
人工智能
ShiMetaPi1 小时前
SAM(通用图像分割基础模型)丨基于BM1684X模型部署指南
人工智能·算法·ai·开源·bm1684x·算力盒子