Subset Selection

白话解释:https://www.geeksforgeeks.org/feature-subset-selection-process/

貌似有一种比较常见的方法,称为多元逐步回归有3种筛选自变量的方法

(1)向前法:n个因变量情况,慢慢增加因变量到方程中,计算各个因变量对y的影响,若无影响则删除,迭代执行。

(2)向后法:和前向法相反,也即是说一开始把所有因变量加到方程里慢慢删。

(3)逐步法(本次分享):逐步法结合向前法和向后法的优点,在向前引入每一个新自变量之后都要重新对已代入的自变量进行计算,以检验其有无继续保留在方程中的价值,并以此为依据进行自变量的引入和剔除交替进行,直到没有新的变量可以引入或剔除为止,此法较为准确。

相关推荐
Godspeed Zhao16 分钟前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
Coding茶水间2 小时前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
有为少年3 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
nnerddboy4 小时前
解决传统特征波段选择的不可解释性:2. SHAP和LIME
python·机器学习
ekprada6 小时前
Day 47 - 注意力热力图 (Attention Heatmap)
人工智能·机器学习
Yeats_Liao6 小时前
MindSpore开发之路(八):数据处理之Dataset(上)——构建高效的数据流水线
数据结构·人工智能·python·机器学习·华为
九河云6 小时前
人工智能驱动企业数字化转型:从效率工具到战略引擎
人工智能·物联网·算法·机器学习·数字化转型
Godspeed Zhao6 小时前
自动驾驶中的传感器技术78——Sensor Fusion(1)
人工智能·机器学习·自动驾驶
STLearner7 小时前
AAAI 2026 | 时空数据(Spatial-temporal)论文总结[上](时空预测,轨迹挖掘,自动驾驶等)
大数据·人工智能·python·深度学习·机器学习·数据挖掘·自动驾驶