Subset Selection

白话解释:https://www.geeksforgeeks.org/feature-subset-selection-process/

貌似有一种比较常见的方法,称为多元逐步回归有3种筛选自变量的方法

(1)向前法:n个因变量情况,慢慢增加因变量到方程中,计算各个因变量对y的影响,若无影响则删除,迭代执行。

(2)向后法:和前向法相反,也即是说一开始把所有因变量加到方程里慢慢删。

(3)逐步法(本次分享):逐步法结合向前法和向后法的优点,在向前引入每一个新自变量之后都要重新对已代入的自变量进行计算,以检验其有无继续保留在方程中的价值,并以此为依据进行自变量的引入和剔除交替进行,直到没有新的变量可以引入或剔除为止,此法较为准确。

相关推荐
宁远x2 小时前
Flash Attention原理介绍与使用方法
人工智能·深度学习·机器学习
龙山云仓5 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
rgb2gray6 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
(; ̄ェ ̄)。6 小时前
机器学习入门(二十一)特征工程
人工智能·机器学习
高洁019 小时前
大模型架构演进:从Transformer到MoE
python·深度学习·机器学习·数据挖掘·知识图谱
谁不学习揍谁!9 小时前
基于python机器学习算法的农作物产量可视化分析预测系统(完整系统源码+数据库+详细文档+论文+详细部署教程+答辩PPT)获取方式
python·算法·机器学习
爱寂寞的时光9 小时前
GPTQ原理浅析及简单实现
人工智能·机器学习
FL162386312912 小时前
智慧医疗手术工具医疗器械检测数据集VOC+YOLO格式2273张15类别
人工智能·yolo·机器学习
何伯特12 小时前
越野环境自动驾驶状态机:基于TinyFSM的工程实践
人工智能·机器学习·自动驾驶
lisw0512 小时前
Spec-Driven Development,规格驱动开发:程序开发新模式!
人工智能·驱动开发·机器学习