Learning an Animatable Detailed 3D Face Model from In-The-Wild Images论文笔记

Learning an Animatable Detailed 3D Face Model from In-The-Wild Images论文笔记

论文目标:提出一个端到端的框架,可以从非受控的图片中学习高质量、可动画的3D人脸模型。

论文方法:

  1. 数据准备:从网络收集大量真实图片构建训练集,使用基于深度学习的方法预测2D人脸轮廓和表情等。

  2. 基于图像重建损失进行端到端训练,网络包含两个模块:

    • 参数化的3D人脸几何结构模块:预测面部网格拓扑结构和vertex位置。
    • 渲染模块:将3D模型渲染为2D图片。
  3. 训练过程中结合对齐、重建和经典3DMM方法作为正则化,使预测的3D模型更精细和逼真。

  4. 提出拓扑优化模块,进一步优化面部网格结构,使其更协调自然。

  5. 训练好的模型可以进行多种后处理,如细节增强、泛化等。

论文结果:

  1. 在多项评价指标上优于其他state-of-the-art方法。

  2. 可以从单张野生图片重建高质量3D人脸,包含精细的几何结构和表情细节。

  3. 生成的3D人脸模型可直接用于动画和渲染。

论文意义:

  1. 该方法适用于从非受控的野生图片中重建高质量3D面部,可用于多种下游任务。

  2. 提出了端到端训练框架,无需复杂流水线。

  3. 生成模型可直接用于3D动画,具有良好的泛化能力。

  4. 方法效果优于当前最先进技术,为从单张图片重建3D面部提供了进一步改进。

相关推荐
焦耳加热17 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生19 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn24 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
u6061 小时前
常用排序算法核心知识点梳理
算法·排序
格林威1 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技2 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U2 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm