acwing算法基础之搜索与图论--floyd算法

目录

  • [1 基础知识](#1 基础知识)
  • [2 模板](#2 模板)
  • [3 工程化](#3 工程化)

1 基础知识

floyd算法的时间复杂度为O(n^3),它用来解决多源最短路问题。它的原理是基于动态规划。

floyd算法的关键步骤:

  1. k从1到n。
  2. i从1到n。
  3. j从1到n,d[i][j] = min(d[i][j], d[i][k] + d[k][j])。
  4. 经过上述三重循环之后,数组d即是任意两个结点之间的最短距离。

2 模板

cpp 复制代码
初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

3 工程化

题目1:求两两结点之间的最短距离。

cpp 复制代码
#include <iostream>

using namespace std;

const int N = 210;
int n, m, q;
int d[N][N];

int main() {
    cin >> n >> m >> q;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (i == j) d[i][j] = 0;
            else d[i][j] = 0x3f3f3f3f;
        }
    }
    
    int a, b, c;
    while (m--) {
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    
    for (int k = 1; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
    
    while (q--) {
        cin >> a >> b;
        if (d[a][b] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
        else cout << d[a][b] << endl;
    }
    
    return 0;
}
相关推荐
Not Dr.Wang42229 分钟前
自动控制系统稳定性研究及判据分析
算法
VT.馒头29 分钟前
【力扣】2722. 根据 ID 合并两个数组
javascript·算法·leetcode·职场和发展·typescript
ffqws_34 分钟前
A*算法:P5507 机关 题解
算法
执着2591 小时前
力扣hot100 - 108、将有序数组转换为二叉搜索树
算法·leetcode·职场和发展
2501_901147831 小时前
学习笔记:单调递增数字求解的迭代优化与工程实践
linux·服务器·笔记·学习·算法
AI科技星1 小时前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
kebijuelun1 小时前
ERNIE 5.0:统一自回归多模态与弹性训练
人工智能·算法·语言模型·transformer
历程里程碑1 小时前
普通数组----最大子数组和
大数据·算法·elasticsearch·搜索引擎·排序算法·哈希算法·散列表
52Hz1182 小时前
力扣230.二叉搜索树中第k小的元素、199.二叉树的右视图、114.二叉树展开为链表
python·算法·leetcode
苦藤新鸡2 小时前
56.组合总数
数据结构·算法·leetcode