acwing算法基础之搜索与图论--floyd算法

目录

  • [1 基础知识](#1 基础知识)
  • [2 模板](#2 模板)
  • [3 工程化](#3 工程化)

1 基础知识

floyd算法的时间复杂度为O(n^3),它用来解决多源最短路问题。它的原理是基于动态规划。

floyd算法的关键步骤:

  1. k从1到n。
  2. i从1到n。
  3. j从1到n,d[i][j] = min(d[i][j], d[i][k] + d[k][j])。
  4. 经过上述三重循环之后,数组d即是任意两个结点之间的最短距离。

2 模板

cpp 复制代码
初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

3 工程化

题目1:求两两结点之间的最短距离。

cpp 复制代码
#include <iostream>

using namespace std;

const int N = 210;
int n, m, q;
int d[N][N];

int main() {
    cin >> n >> m >> q;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (i == j) d[i][j] = 0;
            else d[i][j] = 0x3f3f3f3f;
        }
    }
    
    int a, b, c;
    while (m--) {
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    
    for (int k = 1; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
    
    while (q--) {
        cin >> a >> b;
        if (d[a][b] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
        else cout << d[a][b] << endl;
    }
    
    return 0;
}
相关推荐
京东零售技术2 小时前
扛起技术大梁的零售校招生们 | 1024技术人特别篇
算法
爱coding的橙子2 小时前
每日算法刷题Day78:10.23:leetcode 一般树7道题,用时1h30min
算法·leetcode·深度优先
Swift社区2 小时前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者2 小时前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
papership3 小时前
【入门级-算法-5、数值处理算法:高精度的减法】
算法·1024程序员节
lingran__3 小时前
算法沉淀第十天(牛客2025秋季算法编程训练联赛2-基础组 和 奇怪的电梯)
c++·算法
DuHz3 小时前
基于MIMO FMCW雷达的二维角度分析多径抑制技术——论文阅读
论文阅读·物联网·算法·信息与通信·毫米波雷达
Dragon_D.3 小时前
排序算法大全——插入排序
算法·排序算法·c·学习方法
大数据张老师4 小时前
数据结构——红黑树
数据结构·算法·红黑树
自在极意功。4 小时前
动态规划核心原理与高级实战:从入门到精通(Java全解)
java·算法·动态规划·最优子结构·重叠子问题