acwing算法基础之搜索与图论--floyd算法

目录

  • [1 基础知识](#1 基础知识)
  • [2 模板](#2 模板)
  • [3 工程化](#3 工程化)

1 基础知识

floyd算法的时间复杂度为O(n^3),它用来解决多源最短路问题。它的原理是基于动态规划。

floyd算法的关键步骤:

  1. k从1到n。
  2. i从1到n。
  3. j从1到n,d[i][j] = min(d[i][j], d[i][k] + d[k][j])。
  4. 经过上述三重循环之后,数组d即是任意两个结点之间的最短距离。

2 模板

cpp 复制代码
初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

3 工程化

题目1:求两两结点之间的最短距离。

cpp 复制代码
#include <iostream>

using namespace std;

const int N = 210;
int n, m, q;
int d[N][N];

int main() {
    cin >> n >> m >> q;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (i == j) d[i][j] = 0;
            else d[i][j] = 0x3f3f3f3f;
        }
    }
    
    int a, b, c;
    while (m--) {
        cin >> a >> b >> c;
        d[a][b] = min(d[a][b], c);
    }
    
    for (int k = 1; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
    
    while (q--) {
        cin >> a >> b;
        if (d[a][b] > 0x3f3f3f3f / 2) cout << "impossible" << endl;
        else cout << d[a][b] << endl;
    }
    
    return 0;
}
相关推荐
NAGNIP35 分钟前
一文搞懂树模型与集成模型
算法·面试
NAGNIP41 分钟前
万字长文!一文搞懂监督学习中的分类模型!
算法·面试
技术狂人16844 分钟前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
D_FW1 小时前
数据结构第六章:图
数据结构·算法
a程序小傲2 小时前
京东Java面试被问:动态规划的状态压缩和优化技巧
java·开发语言·mysql·算法·adb·postgresql·深度优先
自学不成才2 小时前
深度复盘:一次flutter应用基于内存取证的黑盒加密破解实录并完善算法推理助手
c++·python·算法·数据挖掘
June`2 小时前
全排列与子集算法精解
算法·leetcode·深度优先
徐先生 @_@|||2 小时前
Palantir Foundry 五层架构模型详解
开发语言·python·深度学习·算法·机器学习·架构
夏鹏今天学习了吗3 小时前
【LeetCode热题100(78/100)】爬楼梯
算法·leetcode·职场和发展