分类网络搭建示例

搭建CNN网络

本章我们来学习一下如何搭建网络,初始化方法,模型的保存,预训练模型的加载方法。本专栏需要搭建的是对分类性能的测试,所以这里我们只以VGG为例。

请注意,这里定义的只是一个简陋的版本,后续一些经典网络的学习,我们会在另外单独去开一个专栏讲解。

1. 网络搭建

在PyTorch中,你可以使用 torchvision.models 中的 vgg16 来加载预定义的VGG16模型,也可以手动定义。以下是手动定义的一个简化版本:

python 复制代码
import torch
import torch.nn as nn

class VGG16(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

2. 初始化方法

在这里,我们不再手动初始化每一层,因为PyTorch的默认初始化通常足够好。你可以选择手动初始化,如果需要,可以使用 torch.nn.init 中的不同方法。

3. 模型的保存

使用 torch.save 保存VGG16模型:

python 复制代码
vgg16 = VGG16()

torch.save(vgg16.state_dict(), 'vgg16_model.pth')

4. 预训练模型的加载

要加载预训练的VGG16模型,你可以使用 torchvision.models 中的 vgg16(pretrained=True),或者手动加载预训练权重:

python 复制代码
vgg16 = VGG16()

vgg16.load_state_dict(torch.load('pretrained_vgg16.pth'))

请确保路径 'pretrained_vgg16.pth' 是你预训练模型文件的实际路径。你可以从PyTorch的官方模型库或其他来源下载预训练权重。

上面是最简单的一种模型全部加载的方式,但也有一些情况下,只是想加载其中一部分层的参数。剩下一部分由于已经改变参数了,无法加载预训练模型,所以要选择随机初始化。 、

这里我们来观察网络怎么去表示的:

python 复制代码
if __name__ == "__main__":
    model = VGG16()
    for name, value in model.named_parameters():
        print(name)

下面就是控制台打印出的部分信息。

这两行的输出就是打印网络层的名字,实际上加载预训练模型时,也是按照这个名字来加载的。

python 复制代码
# 加载预训练 VGG16 模型的参数
pretrained_dict = torch.load('pretrained_vgg16.pth')

# 剔除预训练模型中全连接层的参数
pretrained_dict.pop('classifier.0.weight')
pretrained_dict.pop('classifier.0.bias')
pretrained_dict.pop('classifier.3.weight')
pretrained_dict.pop('classifier.3.bias')
pretrained_dict.pop('classifier.6.weight')
pretrained_dict.pop('classifier.6.bias')

# 获取自定义模型的参数字典
model_dict = model.state_dict()

# 更新自定义模型的参数字典,加载预训练模型的参数值
model_dict.update(pretrained_dict)

# 加载更新后的参数字典到自定义模型中
model.load_state_dict(model_dict)

自己定义的一些层是不会出现在pretrained_dict中,因此会将其剔除,从而只加载了 pretrained_dict中有的层。

总结

本章只是对网络的定义进行一个简单的示例,具体的部分我们会在另外一个专栏讲解,这里只是为了让读者了解网络定义的流程。在实际项目中,通常需要更详细的网络结构,包括适当的初始化方法、损失函数的选择、优化器的设置等。如果读者了解掌握了基本的网络定义过程,你可以在本专栏中深入讲解这些方面,以及如何训练和评估模型等内容。

相关推荐
一 铭20 分钟前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield4 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域5 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技5 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎7 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊7 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪