OpenCV 笔记(6):像素间的基本关系——邻域、邻接、通路、连通、距离

像素是图像的基本元素,像素与像素之间存在着某些联系,理解像素间的基本关系是数字图像处理的基础。常见的像素间的基本关系包括:邻域、邻接、通路、连通、距离。

Part11. 邻域

邻域表示了像素之间的连接关系。

像素(x,y)的邻域 ,是指与像素(x,y)对应的点的集合{(x+p,y+q)} ,其中 (p,q) 为一对有意义的整数。邻域是像素(x,y)附近像素形成的区域,像素 (x,y) 也被称为中心像素。

最常用的邻域有以下几种:

  • 4 邻域:对于像素(x,y),上下左右4个像素被称为 4 邻域,使用

    表示。4 邻域的四个像素分别是:(x,y-1)、(x,y+1)、(x-1,y)、(x+1,y)。

  • D 邻域:对于像素(x, y), 其左上、右上、左下、右下的四个对角上的像素组成了 D 邻域,使用

    表示。D 邻域四个像素分别是:(x + 1, y + 1)、( x + 1, y - 1)、(x - 1, y + 1)、(x - 1, y - 1)。

  • 8 邻域:对于像素(x,y),它的4-邻域的点和 D-邻域的点组成了 8 邻域,使用

    表示。那么,

邻域.png

邻域是一个很基础的概念。后续我们对图像进行卷积 操作的时候,通常是对当前像素的邻域像素进行操作的

以一个最简单的均值滤波为例,均值滤波是对于每一个像素点, 将其设定为取其邻域窗口内的所有像素的平均值。

算术均值滤波器的公式:

其中,
表示以像素(x,y)为中心的区域,m*n 是 模板 的大小。f(x,y) 表示原图像,g(x,y) 表示使用 定义的邻域中的像素所计算出的算术平均值。 这里的模板,也可以被称为核(kernels)、窗口(windows)、掩模(mask)。

下图以 3*3 的模板为例,均值滤波会对原图像的每一个像素点,计算它的邻域像素和模版矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。窗口的移动是从左到右,然后从上到下依次移动。
卷积.png

下面,实现一个简单的均值滤波函数

go 复制代码
Mat meanFilter(Mat &src, int ksize = 3)
{
    cv::Mat dst = src.clone();

    int k0 = ksize/2;
    int sum[3] = {0,0,0};
    for(int i=k0;i<dst.rows-k0-1;i++)
    {
        for(int j=k0;j<dst.cols-k0-1;j++)
        {
            memset(sum,0, sizeof(sum));

            for(int channel = 0; channel<3; channel++)
            {
                for(int m = 0;m<ksize;m++)
                {
                    for (int n=0;n<ksize;n++)
                    {
                        sum[channel] += src.at<cv::Vec3b>(i-k0+m,j-k0+n)[channel];
                    }
                }

                dst.at<Vec3b>(i,j)[channel] = saturate_cast<uchar>((float)sum[channel] /(ksize*ksize));
            }
        }
    }
    return dst;
}

当然这个代码只是粗略地实现均值滤波,存在着很多优化的空间,例如使用积分图、卷积核分离等。OpenCV 也提供了均值滤波函数 blur() 函数。

go 复制代码
int main(int argc,char *argv[])
{
    Mat src = imread(".../flower.jpg");
    imshow("src",src);
    Mat dst;

    dst = meanFilter(src, 15);
    imshow("meanFilter",dst);

    blur(src,dst,Size(15,15));
    imshow("blur",dst);

    waitKey(0);
    return 0;
}

均值滤波函数效果.png

上面只是简单例举了领域的使用场景,后续会有专门的文章来详细介绍卷积和滤波。

Part22. 邻接

邻接 是指两个像素,在位置上相邻 并且取值相同或相近

我们用 V 表示定义邻接的灰度值集合。在二值图像中,V={1} 表示值为1的像素邻接。在灰度图像中,V 包含更多的元素。

  • **4 邻接:**对于灰度值在 V 集合中的像素 p 和 q,如果 q 在

    中,那么像素 p 和 q 是 4 邻接的。

  • **8 邻接:**对于灰度值在 V 集合中的像素 p 和 q,如果 q 在

    中,那么像素 p 和 q 是 8 邻接的。

  • **m 邻接(混合邻接):**m 邻接是 8 邻接的改进。只要满足以下任何一个条件即可:

    • q 在

    • q 在

      中,且集合在 中没有来自 V 中的像素。

像素 p 和 q 是 4 邻接,那么它们一定是 8 邻接的。反之,不一定成立。

下图反应了 8 邻接会带来二义性。
邻接.png

从图中可以看到,p 是中心像素。

  1. q1、q2 和 p 是 8 邻接的。

  2. q1 和 p 非 m 邻接的。

  3. q2 和 p 是 m 邻接的。

某条通路经过像素 q2、p、q1,那会有几种走法呢?

如果从 p、q1、q2 是 8 邻接的角度看,p 到 q1 可以有2种走法,所以 q2 到 q1 的通路有2条。

同理,从 m 邻接角度看,p 和 q1 只有1种走法,所以 q2 到 q1 的通路只有1条。

所以,m 邻接的引入是为了消除 8 邻接常常带来二义性

从集合的角度看:

邻接邻接邻接

Part33. 通路

通路:从像素 p
到像素 q 的通路是特定的像素序列,其坐标为:

,,,

并且满足,
和 对于 是邻接的。

**闭合通路:**如果满足
,则通路是闭合通路。

由不同的邻接定义,可以得到不同的通路:4 邻接 => 4 通路,8 邻接 => 8 通路,m 邻接 => m 通路
通路.png

所以,从中间的图可以看到 q2 和 q1 之间存在 8 通路,从最右的图可以看到 q2 和 q1 之间存在 m 通路。

从集合的角度看:

通路通路通路

下图中,p-q 通路对应的是不同的通路。
多种通路.png

Part44. 连通

连通:若 S 是图像中的一个像素子集,对于任意的


。如果存在一条由 S 中像素组成的从 p 到 q 的通路,则称 p 在图像集 S 中与 q 连通

邻接连通的一种特例,连通是由一系列依次邻接的像素组成的。

连通分为 4 连通8 连通

连通分量:对于 S 中任意像素 p,所有与 p 相连通且又在 S 中的像素集合。

连通集:如果 S 中仅有一个连通分量,则 S 称为连通集。

在之前基本图形的绘制那篇文章里, 曾介绍过绘图函数所使用的 lineType 参数。

下面对这个参数做一些补充说明:

  • LINE_4 :基于 4 连通 Bresenham 算法处理的直线。

  • LINE_8 :基于 8 连通 Bresenham 算法处理的直线。

  • LINE_AA :基于高斯滤波平滑处理的直线。

lineType 参数.png

下面的例子,展示了使用不同的 lineType 参数的效果

go 复制代码
int main(int argc,char *argv[])
{
    Mat image = Mat::zeros(Size(80, 80), CV_8UC3);
    image.setTo(255);// 设置屏幕为白色

    Point p1(20, 0);
    Point p2(80, 60);
    Point p3(0, 0);
    Point p4(80, 80);
    Point p5(0, 20);
    Point p6(60, 80);

    line(image, p1, p2, Scalar(0, 0, 255), 1, LINE_4);
    line(image, p3, p4, Scalar(255, 0, 0), 1, LINE_8);
    line(image, p5, p6, Scalar(0, 255, 0), 1, LINE_AA);

    imshow("src", image);

    waitKey(0);
    return 0;
}

将生成的图片放大,可以看到使用 LINE_4、LINE_8、LINE_AA 画出来的线段效果是不同的。使用 LINE_AA 效果看上去是最好的,其次是 LINE_8。
不同lineType参数的效果.png 通过邻接可以引申很多概念,邻接 -> 通路 -> 连通 -> 连通集 -> 区域/邻接区域 -> 前景和背景 -> 边界

Part55. 距离

对于像素 p(x,y)、q(s,t) 和 z(u,v),如果满足:

  • 非负性:D(p,q) ≥ 0

  • 同一性:D(p,q)=0,当且仅当p=q时

  • 对称性:D(p,q) = D(q,p)

  • 直递性:D(p,z) ≤ D(p,q) + D(q,z)

则称 D 是距离的度量函数。

在欧几里得空间中,点
和点 之间的 闵可夫斯基距离

  • 曼哈顿距离

当 p = 1 时,即为曼哈顿距离或城市距离、街区距离,是指两个向量之间的距离,在计算距离时不涉及对角线移动。像素 p(x,y) 和 q(s,t) 之间的距离公式:

表示从像素 p 向像素 q 出发,每次能走的点必须是在当前像素点的 4 邻域中。一步一步走到 q 点后,一共经过的像素点数就是曼哈顿距离。

  • 欧式距离

当 p = 2 时,即为欧式距离,就是直角坐标系的距离。像素 p(x,y) 和 q(s,t) 之间的距离公式:

  • 切比雪夫距离

当 p =
时,即为切比雪夫距离或棋盘距离,像素 p(x,y) 和 q(s,t) 之间的距离公式:

表示从像素 p 向像素 q 出发,每次能走的点必须是在当前像素点的 8 邻域中。一步一步走到 q 点后,一共经过的像素点数就是切比雪夫距离。

Part66. 总结

本文涉及到很多概念,这些概念代表着像素间的基本关系。像邻域、连通在后续文章中很多都会涉及到,像距离又跟相似度有关,所以它们是数字图像的基础。

****【Java与Android技术栈】公众号

关注 Java/Kotlin 服务端、桌面端 、Android 、机器学习、端侧智能

更多精彩内容请关注:

相关推荐
ZPC821024 分钟前
OpenCV—颜色识别
人工智能·opencv·计算机视觉
Mr.简锋30 分钟前
vs2022搭建opencv开发环境
人工智能·opencv·计算机视觉
m0_7431064635 分钟前
论文笔记:no pose,no problem-基于dust3r输出GS参数实现unpose稀疏重建
论文阅读·深度学习·计算机视觉·3d·几何学
weixin_4432906935 分钟前
【论文阅读】InstructPix2Pix: Learning to Follow Image Editing Instructions
论文阅读·人工智能·计算机视觉
不会编程的懒洋洋1 小时前
Spring Cloud Eureka 服务注册与发现
java·笔记·后端·学习·spring·spring cloud·eureka
ai产品老杨1 小时前
部署神经网络时计算图的优化方法
人工智能·深度学习·神经网络·安全·机器学习·开源
火山引擎边缘云1 小时前
创新实践:基于边缘智能+扣子的智能轮椅 AIoT 解决方案
人工智能·llm·边缘计算
fanxbl9571 小时前
深入探索离散 Hopfield 神经网络
人工智能·神经网络
ballball~~1 小时前
色彩滤波阵列(Color Filter Array, CFA)详解
计算机视觉·cfa
TaoYuan__1 小时前
深度学习概览
人工智能·深度学习