OpenCV+计算摄影

图像去噪

  • cv.fastNlMeansDenoising()-处理单个灰度图像
  • cv.fastNlMeansDenoisingColored()-处理彩色图像。
  • cv.fastNlMeansDenoisingMulti()-处理在短时间内捕获的图像序列(灰度图像)
  • cv.fastNlMeansDenoisingColoredMulti()-与上面相同,但用于彩色图像。

常用参数为:

  • h:决定滤波器强度的参数。较高的h值可以更好地消除噪点,但同时也可以消除图像细节。(可以设为10)
  • hForColorComponents:与h相同,但仅用于彩色图像。(通常与h相同)
  • templateWindowSize:应为奇数。(建议设为7)
  • searchWindowSize:应为奇数。(建议设为21)

图像修补

我们需要创建一个与输入图像大小相同的掩码,其中非零像素对应于要修复的区域。

c 复制代码
import numpy as np
import cv2 as cv
img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

高动态范围

将曝光图像加载到列表中

将曝光合成HDR图像

在此阶段,我们将曝光序列合并为一张HDR图像,显示了OpenCV中的两种可能性。 第一种方法是Debevec,第二种方法是Robertson。 请注意,HDR图像的类型为float32,而不是uint8,因为它包含所有曝光图像的完整动态范围。

c 复制代码
import cv2 as cv
import numpy as np
# 将曝光图像加载到列表中
img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"]
img_list = [cv.imread(fn) for fn in img_fn]
exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32)
# 将曝光合成HDR图像
merge_debevec = cv.createMergeDebevec()
hdr_debevec = merge_debevec.process(img_list, times=exposure_times.copy())
merge_robertson = cv.createMergeRobertson()
hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy())

色调图HDR图像

我们将32位浮点HDR数据映射到[0...1]范围内。实际上,在某些情况下,该值可以大于1或小于0,因此请注意,我们稍后将必须裁剪数据以避免溢出。

c 复制代码
# 色调图HDR图像
tonemap1 = cv.createTonemap(gamma=2.2)
res_debevec = tonemap1.process(hdr_debevec.copy())

使用Mertens融合曝光

在这里,我们展示了一种替代算法,用于合并曝光图像,而我们不需要曝光时间。我们也不需要使用任何色调映射算法,因为Mertens算法已经为我们提供了[0...1]范围内的结果。

c 复制代码
# 使用Mertens融合曝光
merge_mertens = cv.createMergeMertens()
res_mertens = merge_mertens.process(img_list)

转为8-bit并保存

为了保存或显示结果,我们需要将数据转换为[0...255]范围内的8位整数。

c 复制代码
# 转化数据类型为8-bit并保存
res_debevec_8bit = np.clip(res_debevec*255, 0, 255).astype('uint8')
res_robertson_8bit = np.clip(res_robertson*255, 0, 255).astype('uint8')
res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8')
cv.imwrite("ldr_debevec.jpg", res_debevec_8bit)
cv.imwrite("ldr_robertson.jpg", res_robertson_8bit)
cv.imwrite("fusion_mertens.jpg", res_mertens_8bit)
相关推荐
SmartBrain1 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
paid槮4 小时前
机器视觉之图像处理篇
图像处理·opencv·计算机视觉
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成7 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃7 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode