OpenCV+计算摄影

图像去噪

  • cv.fastNlMeansDenoising()-处理单个灰度图像
  • cv.fastNlMeansDenoisingColored()-处理彩色图像。
  • cv.fastNlMeansDenoisingMulti()-处理在短时间内捕获的图像序列(灰度图像)
  • cv.fastNlMeansDenoisingColoredMulti()-与上面相同,但用于彩色图像。

常用参数为:

  • h:决定滤波器强度的参数。较高的h值可以更好地消除噪点,但同时也可以消除图像细节。(可以设为10)
  • hForColorComponents:与h相同,但仅用于彩色图像。(通常与h相同)
  • templateWindowSize:应为奇数。(建议设为7)
  • searchWindowSize:应为奇数。(建议设为21)

图像修补

我们需要创建一个与输入图像大小相同的掩码,其中非零像素对应于要修复的区域。

c 复制代码
import numpy as np
import cv2 as cv
img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

高动态范围

将曝光图像加载到列表中

将曝光合成HDR图像

在此阶段,我们将曝光序列合并为一张HDR图像,显示了OpenCV中的两种可能性。 第一种方法是Debevec,第二种方法是Robertson。 请注意,HDR图像的类型为float32,而不是uint8,因为它包含所有曝光图像的完整动态范围。

c 复制代码
import cv2 as cv
import numpy as np
# 将曝光图像加载到列表中
img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"]
img_list = [cv.imread(fn) for fn in img_fn]
exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32)
# 将曝光合成HDR图像
merge_debevec = cv.createMergeDebevec()
hdr_debevec = merge_debevec.process(img_list, times=exposure_times.copy())
merge_robertson = cv.createMergeRobertson()
hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy())

色调图HDR图像

我们将32位浮点HDR数据映射到[0...1]范围内。实际上,在某些情况下,该值可以大于1或小于0,因此请注意,我们稍后将必须裁剪数据以避免溢出。

c 复制代码
# 色调图HDR图像
tonemap1 = cv.createTonemap(gamma=2.2)
res_debevec = tonemap1.process(hdr_debevec.copy())

使用Mertens融合曝光

在这里,我们展示了一种替代算法,用于合并曝光图像,而我们不需要曝光时间。我们也不需要使用任何色调映射算法,因为Mertens算法已经为我们提供了[0...1]范围内的结果。

c 复制代码
# 使用Mertens融合曝光
merge_mertens = cv.createMergeMertens()
res_mertens = merge_mertens.process(img_list)

转为8-bit并保存

为了保存或显示结果,我们需要将数据转换为[0...255]范围内的8位整数。

c 复制代码
# 转化数据类型为8-bit并保存
res_debevec_8bit = np.clip(res_debevec*255, 0, 255).astype('uint8')
res_robertson_8bit = np.clip(res_robertson*255, 0, 255).astype('uint8')
res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8')
cv.imwrite("ldr_debevec.jpg", res_debevec_8bit)
cv.imwrite("ldr_robertson.jpg", res_robertson_8bit)
cv.imwrite("fusion_mertens.jpg", res_mertens_8bit)
相关推荐
红衣小蛇妖6 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer22 分钟前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor1 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154463 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me073 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao3 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
算家计算4 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装4 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801404 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag