切比雪夫不等式

切比雪夫不等式

切比雪夫不等式证明了随机样本偏离 数学期望某个范围 ϵ \epsilon ϵ的概率≤某个数值。

切比雪夫不等式证明及应用,主要证明过程如下。感觉作者证明第一步到第二步有点偷懒了。

其中第一步的函数区间 ∣ X − μ ∣ ≥ ϵ \left| X-\mu \right|\ge\epsilon ∣X−μ∣≥ϵ应当拆成两个积分区间 X ≤ μ − ϵ X\le\mu-\epsilon X≤μ−ϵ和 X ≥ μ + ϵ X\ge\mu+\epsilon X≥μ+ϵ再分开讨论证明。

切比雪夫不等式的证明这个的证明是对的,但叙事顺序有点乱。

相关推荐
safestar20127 分钟前
n8n 架构深度解构:从设计哲学到企业级实践
人工智能·ai编程
喵手10 分钟前
AI在自动化与机器人技术中的前沿应用
人工智能·机器人·自动化
一只乔哇噻27 分钟前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora1 小时前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授1 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿2 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中3 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海4 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络