自动驾驶学习笔记(七)——感知融合

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

《自动驾驶新人之旅》免费课程---> 传送门

《Apollo Beta宣讲和线下沙龙》免费报名--->传送门

文章目录

前言

感知融合

卡尔曼滤波

融合策略

实例

Tips

总结


前言

见《自动驾驶学习笔记(一)------Apollo平台

见《自动驾驶学习笔记(二)------Apollo入门

见《自动驾驶学习笔记(三)------场景设计

见《自动驾驶学习笔记(四)------变道绕行仿真

见《自动驾驶学习笔记(五)------绕行距离调试

见《自动驾驶学习笔记(六)------Apollo安装

感知融合

感知融合利用各个传感器相辅相成,可以提高感知性能,减少跟踪误差,对预测结果更加确信。

卡尔曼滤波

感知融合的一个基本算法是卡尔曼滤波,即模型预测和测量更新的无限循环,如下图所示:

融合策略

1、同步融合:同时更新来自不同传感器的测量结果。

2、异步融合:逐个更新传感器的测量结果。

实例

Lidar和Radar两种传感器检测到的目标位置数据,如下图所示:

Tips

Apollo的车道和目标感知框架:

总结

以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

文中部分图片来源自网络,若有侵权,联系立删。

相关推荐
云卓科技13 小时前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI13 小时前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
高登先生20 小时前
京津冀自动驾驶技术行业盛会|2025北京自动驾驶技术展会
大数据·人工智能·科技·机器人·自动驾驶
开MINI的工科男20 小时前
【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程
人工智能·笔记·自动驾驶·预测与决策·时空联合规划
地平线开发者2 天前
【征程 6 工具链性能分析与优化-1】编译器预估 perf 解读与性能分析
算法·自动驾驶
春贵丶csdn3 天前
又一次安装autoware.universe的过程
自动驾驶
深蓝学院3 天前
CoEdge: 面向自动驾驶的协作式边缘计算系统,实现分布式实时深度学习任务的高效调度与资源优化
分布式·自动驾驶·边缘计算
地平线开发者3 天前
【征程 6 工具链性能分析与优化-2】模型性能优化建议
算法·自动驾驶
Mr.Winter`3 天前
路径规划 | ROS中多个路径规划算法可视化与性能对比分析
人工智能·算法·机器人·自动驾驶·ros·ros2·路径规划
江_小_白4 天前
关于自动驾驶等级相关知识
人工智能·机器学习·自动驾驶