LeetCode 1334. 阈值距离内邻居最少的城市:多次运用单源最短路的迪杰斯特拉算法

【LetMeFly】1334.阈值距离内邻居最少的城市:多次运用单源最短路的迪杰斯特拉算法

力扣题目链接:https://leetcode.cn/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/

n 个城市,按从 0n-1 编号。给你一个边数组 edges,其中 edges[i] = [from~i~, to~i~, weight~i~] 代表 from~i~ 和 to~i~两个城市之间的双向加权边,距离阈值是一个整数 distanceThreshold

返回能通过某些路径到达其他城市数目最少、且路径距离 最大distanceThreshold 的城市。如果有多个这样的城市,则返回编号最大的城市。

注意,连接城市 ij 的路径的距离等于沿该路径的所有边的权重之和。

示例 1:

复制代码
输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
输出:3
解释:城市分布图如上。
每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:
城市 0 -> [城市 1, 城市 2] 
城市 1 -> [城市 0, 城市 2, 城市 3] 
城市 2 -> [城市 0, 城市 1, 城市 3] 
城市 3 -> [城市 1, 城市 2] 
城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3,因为它的编号最大。

示例 2:

复制代码
输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
输出:0
解释:城市分布图如上。 
每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:
城市 0 -> [城市 1] 
城市 1 -> [城市 0, 城市 4] 
城市 2 -> [城市 3, 城市 4] 
城市 3 -> [城市 2, 城市 4]
城市 4 -> [城市 1, 城市 2, 城市 3] 
城市 0 在阈值距离 2 以内只有 1 个邻居城市。

提示:

  • 2 <= n <= 100
  • 1 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 3
  • 0 <= from~i~ < to~i~ < n
  • 1 <= weight~i~, distanceThreshold <= 10^4
  • 所有 (from~i~, to~i~) 都是不同的。

方法一:多次运用单源最短路的迪杰斯特拉算法

迪杰斯特拉算法可以让我们在 O ( n 2 ) O(n^2) O(n2)的时间复杂度内求出图中某点到其他所有点的最短路径。

关于单源最短路的迪杰斯特拉算法,推荐查看某人视频讲解及配套代码。(算法本质是在所有能走的路中选一个最短的能到新节点的路来走)

这样,我们可以写一个函数来获取某个点不超过"distanceThreshold"的"邻居城市"的个数。

使用两个变量分别记录"最少的近邻个数"和"当前答案",遍历一遍每个节点,计算并更新这两个变量即可得到答案。

  • 时间复杂度 O ( n 3 ) O(n^3) O(n3)
  • 空间复杂度 O ( s i z e ( g r a p h ) + n ) O(size(graph) + n) O(size(graph)+n)

AC代码

C++
cpp 复制代码
class Solution {
private:
    int find1City(vector<vector<pair<int, int>>> &graph, int start, int Md) {
        vector<bool> visited(graph.size(), false);
        vector<int> minDistance(graph.size(), 1e9);
        minDistance[start] = 0;
        for (int i = 0; i < graph.size(); i++) {
            int thisMinDistance = 1e9;
            int thisShortestPoint = -1;
            for (int j = 0; j < graph.size(); j++) {
                if (!visited[j] && minDistance[j] < thisMinDistance) {
                    thisMinDistance = minDistance[j];
                    thisShortestPoint = j;
                }
            }
            if (thisMinDistance == 1e9) {
                break;
            }
            visited[thisShortestPoint] = true;
            for (auto& [toPoint, thisDistance] : graph[thisShortestPoint]) {
                if (minDistance[thisShortestPoint] + thisDistance < minDistance[toPoint]) {
                    minDistance[toPoint] = minDistance[thisShortestPoint] + thisDistance;
                }
            }
        }
        int ans = -1;
        for (int i = 0; i < graph.size(); i++) {
            if (minDistance[i] <= Md) {
                ans++;
            }
        }
        return ans;
    }
public:
    int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {
        vector<vector<pair<int, int>>> graph(n);
        for (auto& v : edges) {
            graph[v[0]].push_back({v[1], v[2]});
            graph[v[1]].push_back({v[0], v[2]});
        }
        int mCan = n, Mnum = 0;
        for (int i = 0; i < n; i++) {
            int thisCity = find1City(graph, i, distanceThreshold);
            if (thisCity <= mCan) {
                mCan = thisCity;
                Mnum = i;
            }
        }
        return Mnum;
    }
};

同步发文于CSDN,原创不易,转载经作者同意后请附上原文链接哦~

Tisfy:https://letmefly.blog.csdn.net/article/details/134410277

相关推荐
南宫生3 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
Lenyiin4 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
涵涵子RUSH11 小时前
合并K个升序链表(最优解)
算法·leetcode
清炒孔心菜11 小时前
每日一题 338. 比特位计数
leetcode
sjsjs1112 小时前
【多维DP】力扣3122. 使矩阵满足条件的最少操作次数
算法·leetcode·矩阵
Sudo_Wang12 小时前
力扣150题
算法·leetcode·职场和发展
呆呆的猫14 小时前
【LeetCode】9、回文数
算法·leetcode·职场和发展
Lenyiin15 小时前
3354. 使数组元素等于零
c++·算法·leetcode·周赛
南宫生15 小时前
力扣-图论-70【算法学习day.70】
java·学习·算法·leetcode·图论
陵易居士15 小时前
力扣周赛T2-执行操作后不同元素的最大数量
数据结构·算法·leetcode