用深度学习预测股市涨跌之学习记录

从开始学习深度学习就想用深度学习尝试实现对股市涨跌对预测,虽然不抱很大期望,权当练习了。

硬件

I5 + RTX 2060 + 16G内存

数据

首先,不管用什么模型都需要数据。我的数据来源一开始使用的是XTP的测试接口,后来陆续使用了sina的和东财的,发现sina的数据更加稳定些。所以现在的数据来源是sina抓取分时数据(不是全部大A数据,只抓取可转债和对应的正股数据),然后根据每日收盘数据生成日K数据和其它时间间隔的数据。东财数据作为备份。
另外,每周末收盘,我会自动化下载中信的日K数据(转债和京沪深所有股票),作为数据补充。

模型

数据处理

数据使用 (开盘价,收盘价,最高价,最低价,均价,成交量),数据进行均值正则处理。数据处理结果一定要能体现出价格/成交量的升降趋势来。

模型

RNN

用RNN来预测下一个交易日的股票价格。

使用 GRU、LSTM 等多个RNN模型,进行多次、多轮训练后,发现预测到的股票价格曲线总是延后真正的价格曲线一天左右。估计是损失函数用第二日价格做计算的原因。

DQN 及 改进算法

数据

分别用5天|10天的日K数据作为state,动作为(0-买,1-不买),设定对应的奖励。

训练
  • 先是把所有数据作为一个整体训练一个模型,但是效果很不好,很难收敛。估计是因为转债之间特性不一样,还有各种人为干预的原因,导致数据状态之间差异很大。
  • 然后按照每个转债一个模型这样来训练,发现这样能够快速收敛,胜率也比较大,但是真正试验看,效果并不理想,特别是行情较差的情况下,预测不准。经观察发现,胜率较大也只是那些胜率发生在行情好的阶段。

Actor-Critic

数据:分别用5天|10天的日K数据作为state,动作为(0-买,1-不买),设定对应的奖励。

训练
  • 按一个模型进行训练。效果不好,很难收敛
  • 按每个转债一个模型进行训练。非常快收敛,但是收敛后的胜率并不好。如果把惩罚变大,还会使得动作策略变得极为保守。

TRPO

数据:分别用5天|10天的日K数据作为state,动作为(0-买,1-不买),设定对应的奖励。

训练
  • 按一个模型进行训练。效果不好,很难收敛,训练速度极为缓慢且过程中数据量比较大容易中途报错退出。
  • 按每个转债一个模型进行训练。收敛很慢,但是收敛后的胜率比较好。但是训练速度非常慢。500多只转债,剔除掉120元以下的(价格波动较小),训练一次,大约需要2天多的时间。
相关推荐
胡耀超8 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr
HUIMU_8 小时前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
mit6.8249 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
Coovally AI模型快速验证10 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶10 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
努力还债的学术吗喽11 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
weixin_5079299112 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
AI波克布林14 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
Blossom.11815 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
2502_9271612817 小时前
DAY 40 训练和测试的规范写法
人工智能·深度学习·机器学习