【图数据库实战】HugeGraph图计算流程

HugeGraph是一款易用、高效、通用的开源图数据库系统(Graph Database,GitHub项目地址), 实现了Apache TinkerPop3框架及完全兼容Gremlin查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的应用和产品。HugeGraph支持百亿以上的顶点和边快速导入,并提供毫秒级的关联关系查询能力(OLTP), 并支持大规模分布式图分析(OLAP)。 HugeGragh是百度安全部门自研的图数据库,2018年开源,采用APL 2.0开源协议,迭代了多个版本。

HugeGraph典型应用场景包括深度关系探索、关联分析、路径搜索、特征抽取、数据聚类、社区检测、 知识图谱等,适用业务领域有如网络安全、电信诈骗、金融风控、广告推荐、社交网络和智能机器人等。

HugeGraph支持在线及离线环境下的图操作,支持批量导入数据,支持高效的复杂关联关系分析,并且能够与大数据平台无缝集成。 HugeGraph支持多用户并行操作,用户可输入Gremlin查询语句,并及时得到图查询结果,也可在用户程序中调用HugeGraph API进行图分析或查询。

什么是图计算?

以图模型的方式对现实世界的问题建模,然后分析问题,选出合适的算法解决问题,这些过程就是图计算。比如要在社交网络中量化一个人的重要程度,每个人可以用一个顶点表达,人与人之间的关系通过顶点之间的边表达,图模型建立起来以后可以很直观的判断,如果此人重要,大概率会和很多人建立关联,并且每个人之间的关联路径很短。图计算针对上述场景有紧密中立性算法,可以通过算法计算出每个顶点的分值,分值越高就代表此人重要性越高,如果一个人和所有人都直接建立关联,此人肯定是最重要的人之一。总之通过图模型的方式描述一些问题,很简洁,也很符合我们的直觉。

图计算能够解决什么业务问题?

一般来说图计算能够解决的常见问题包括网络安全、情报关系、智能营销、智能推荐、智能运维等,通过用图模型的方式建模,然后用合适的算法发现特殊点,发现问题,解决问题。比如循环担保问题,图计算可以用环路检测识别是否有循环担保问题,如果出现环路说明存在循环担保。

图计算流程

图计算-并行加载

图计算-并行计算


图计算-并行输出

图计算-算法流程

图计算-算法开发示例

相关推荐
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
TGB-Earnest3 小时前
【py脚本+logstash+es实现自动化检测工具】
大数据·elasticsearch·自动化
大圣数据星球5 小时前
Fluss 写入数据湖实战
大数据·设计模式·flink
suweijie7685 小时前
SpringCloudAlibaba | Sentinel从基础到进阶
java·大数据·sentinel
Data跳动10 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
woshiabc11111 小时前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq12 小时前
Saprk和Flink的区别
大数据·flink
lucky_syq12 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈12 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据