用于神经网络的FLOP和Params计算工具

用于神经网络的FLOP和Params计算工具

1. FlopCountAnalysis

bash 复制代码
pip install fvcore
python 复制代码
import torch
from torchvision.models import resnet152, resnet18
from fvcore.nn import FlopCountAnalysis, parameter_count_table

model = resnet152(num_classes=1000)

tensor = (torch.rand(1, 3, 224, 224),)

#分析FLOPs
flops = FlopCountAnalysis(model, tensor)
print("FLOPs: ", flops.total())

def print_model_parm_nums(model):
    total = sum([param.nelement() for param in model.parameters()])
    print('  + Number of params: %.2fM' % (total / 1e6))

print_model_parm_nums(model)

2. flopth

https://github.com/vra/flopth

bash 复制代码
pip install flopth 

Running on models in torchvision.models

python 复制代码
$ flopth -m alexnet 
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name   | module_type       | in_shape    | out_shape   | params   | params_percent   | params_percent_vis             | flops    | flops_percent   | flops_percent_vis   |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0    | Conv2d            | (3,224,224) | (64,55,55)  | 23.296K  | 0.0381271%       |                                | 70.4704M | 9.84839%        | ####                |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1    | ReLU              | (64,55,55)  | (64,55,55)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2    | MaxPool2d         | (64,55,55)  | (64,27,27)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3    | Conv2d            | (64,27,27)  | (192,27,27) | 307.392K | 0.50309%         |                                | 224.089M | 31.3169%        | ###############     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4    | ReLU              | (192,27,27) | (192,27,27) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5    | MaxPool2d         | (192,27,27) | (192,13,13) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6    | Conv2d            | (192,13,13) | (384,13,13) | 663.936K | 1.08662%         |                                | 112.205M | 15.6809%        | #######             |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7    | ReLU              | (384,13,13) | (384,13,13) | 0.0      | 0.0%             |                                | 64.896K  | 0.00906935%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8    | Conv2d            | (384,13,13) | (256,13,13) | 884.992K | 1.44841%         |                                | 149.564M | 20.9018%        | ##########          |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9    | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10   | Conv2d            | (256,13,13) | (256,13,13) | 590.08K  | 0.965748%        |                                | 99.7235M | 13.9366%        | ######              |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11   | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12   | MaxPool2d         | (256,13,13) | (256,6,6)   | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool       | AdaptiveAvgPool2d | (256,6,6)   | (256,6,6)   | 0.0      | 0.0%             |                                | 9.216K   | 0.00128796%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0  | Dropout           | (9216)      | (9216)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1  | Linear            | (9216)      | (4096)      | 37.7528M | 61.7877%         | ############################## | 37.7487M | 5.27547%        | ##                  |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3  | Dropout           | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4  | Linear            | (4096)      | (4096)      | 16.7813M | 27.4649%         | #############                  | 16.7772M | 2.34465%        | #                   |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6  | Linear            | (4096)      | (1000)      | 4.097M   | 6.70531%         | ###                            | 4.096M   | 0.572425%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+


FLOPs: 715.553M
Params: 61.1008M

Running on custom models

python 复制代码
# file path: /tmp/my_model.py
# model name:  MyModel
import torch.nn as nn


class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)

    def forward(self, x1):
        x1 = self.conv1(x1)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x1 = self.conv4(x1)
        return x1
python 复制代码
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name   | module_type   | in_shape    | out_shape   |   params | params_percent   | params_percent_vis   | flops    | flops_percent   | flops_percent_vis   |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+

FLOPs: 16.8591M
Params: 336.0

3. calflops

https://github.com/MrYxJ/calculate-flops.pytorch/tree/main

bash 复制代码
pip install calflops
python 复制代码
from calflops import calculate_flops
from torchvision import models

model = models.alexnet()
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
flops, macs, params = calculate_flops(model=model, 
                                      input_shape=input_shape,
                                      output_as_string=True,
                                      output_precision=4)
print("Alexnet FLOPs:%s   MACs:%s   Params:%s \n" %(flops, macs, params))
#Alexnet FLOPs:4.2892 GFLOPS   MACs:2.1426 GMACs   Params:61.1008 M 
  1. from thop import profile

https://github.com/Lyken17/pytorch-OpCounter

bash 复制代码
pip install thop
python 复制代码
from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))
python 复制代码
class YourModule(nn.Module):
    # your definition
def count_your_model(model, x, y):
    # your rule here

input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ), 
                        custom_ops={YourModule: count_your_model})
相关推荐
迅易科技1 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神2 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI3 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME4 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室5 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself5 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee6 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa6 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai