K-Means算法进行分类

已知数据集D中有9个数据点,分别是(1,2),(2,3), (2,1), (3,1),(2,4),(3,5),(4,3),(1,5),(4,2)。采用K-Means算法进行聚类,k=2,设初始中心点为(1.1,2.2),(2.3,3.5)。 试模拟K-Means算法的一次迭代过程,即先计算样本点到类中心点的距离,然后把样本点划分到最近的类中,最后更新类中心点的坐标


数据集合D:{(1,2),(2,3),(2,1),(3,1),(2,4),(3,5),(4,3),(1,5),(4,2)} 初始中心点: C1=(1.1,2.2),C2=(2.3,3.5) 计算每个数据点到两个中心点的距离,并将其划分到距离最近的类中。假设我们使用欧氏距离:

计算每个数据点到两个中心点的距离:

将每个数据点划分到距离最近的类中。这里我们用1和2表示两个类: C={1,2,1,1,2,2,2,2,2}
更新类中心点的坐标,即计算每个类的均值: C1=((1+2+3)/3,(2+1+1)/3)≈(2,1.3) C2=((2+2+3+4+1+4)/6,(3+4+5+3+5+2)/6))≈(2.6,3.6)
新的中心点更新为(2,1.3)和(2.6,3.6)
依次迭代直到发现没有重新分配或者准则函数收敛程序结束

相关推荐
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
AI小云1 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
Fanxt_Ja1 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下1 天前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶1 天前
算法 --- 字符串
算法
博笙困了1 天前
AcWing学习——差分
c++·算法
NAGNIP1 天前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP1 天前
大模型微调框架之LLaMA Factory
算法
echoarts1 天前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust