PyTorch中并行训练的几种方式


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


博主原文链接:https://www.yourmetaverse.cn/nlp/504/


(封面图由文心一格生成)

PyTorch中并行训练的几种方式

在深度学习的世界里,随着模型变得越来越复杂,训练时间也随之增长。为了加快训练速度,利用并行计算变得至关重要。PyTorch作为一个流行的深度学习框架,提供了多种并行训练的方法。本文将介绍几种常用的并行训练方式,包括数据并行(Data Parallelism)、模型并行(Model Parallelism)、分布式数据并行(Distributed Data Parallelism)以及混合并行(Hybrid Parallelism)。

1. 数据并行(Data Parallelism)

数据并行是最简单直接的并行训练方法。它通过将训练数据分割成多个小批次,然后在多个GPU上并行处理这些批次来实现加速。PyTorch通过torch.nn.DataParallel来实现数据并行。

优点:

  • 易于实现和使用。
  • 适合小到中等规模的模型。

缺点:

  • 随着GPU数量的增加,由于GPU之间需要同步,可能会遇到通信瓶颈。

2. 模型并行(Model Parallelism)

模型并行是另一种并行训练方法,它将模型的不同部分放在不同的计算设备上。例如,将一个大型神经网络的不同层分别放在不同的GPU上。

优点:

  • 适用于大模型,尤其是单个模型无法放入单个GPU内存的情况。

缺点:

  • 实现复杂。
  • 需要精心设计以减少设备间的通信。

3. 分布式数据并行(Distributed Data Parallelism)

分布式数据并行(DDP)是一种更高级的并行方法,它不仅在多个GPU上分配数据,还在多台机器之间分配工作。PyTorch通过torch.nn.parallel.DistributedDataParallel实现DDP。

优点:

  • 可以在多台机器上并行处理,进一步提高了训练效率。
  • 减少了GPU间的通信开销。

缺点:

  • 设置比较复杂。
  • 对网络和数据加载方式有额外的要求。

4. 混合并行(Hybrid Parallelism)

混合并行结合了数据并行和模型并行的优点。它在不同的GPU上既分配模型的不同部分,也分配不同的数据。

优点:

  • 最大化了资源利用率。
  • 适用于极大规模的模型和数据集。

缺点:

  • 实现难度最大。
  • 需要更多的调优和优化。

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️
👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈


相关推荐
从零开始学习人工智能1 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发1 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu1232 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一4 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
DataLaboratory5 小时前
Python爬取百度地图-前端直接获取
爬虫·python·百度地图
ACP广源盛139246256736 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超6 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
Turnsole_y7 小时前
pycharm自动化测试初始化
python·selenium
停停的茶7 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309168 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习