2021秋招-数据结构-栈、队列、数组、列表

栈、队列、数组、列表

实现方式

队列
复制代码
class Queue:
    def __init__(self):
        self.items = []

    def enqueue(self, item):
        self.items.append(item)

    def dequeue(self):
        return self.items.pop(0)

    def empty(self):
        return self.size() == 0

    def size(self):
        return len(self.items)
应用: 约瑟夫斯问题
复制代码
著名的 约瑟夫斯问题(Josephus Problem)是应用队列(确切地说,是循环队列)的典型案例。
在 约瑟夫斯问题 中,参与者围成一个圆圈,从某个人(队首)开始报数,报数到n+1的人退出圆圈,
然后从退出人的下一位重新开始报数;重复以上动作,直到只剩下一个人为止。

值得注意的是,Queue类只实现了简单队列,上述问题实际上需要用循环队列来解决。
在报数过程中,通过"将(从队首)出队的人再入队(到队尾)"来模拟循环队列的行为。具体代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

def josephus(namelist, num):
    simqueue = Queue()
    for name in namelist:
        simqueue.enqueue(name)

    while simqueue.size() > 1:
        for i in xrange(num):
            simqueue.enqueue(simqueue.dequeue())

        simqueue.dequeue()

    return simqueue.dequeue()

if __name__ == '__main__':
    print(josephus(["Bill", "David", "Kent", "Jane", "Susan", "Brad"], 3))
20. 有效的括号-栈-简单
  • python自己-实现

    class Solution:
    def isValid(self, s: str) -> bool:
    # 栈: 遇到 '(', '[', '{'
    # 词典: {'{}', '()', '[]'}
    stack = []
    dict1 = {'}':'{', ']':'[', ')':'('}
    for i in range(len(s)):
    if s[i] not in dict1:
    stack.append(s[i])
    else:
    if not stack or stack.pop() != dict1[s[i]]:
    return False

    复制代码
          return False if stack else True
32. 最长有效括号-困难
⭐最长有效括号powcai
⭐手画图解-栈、动态规划 的思路
解题思路一:常规-栈

对于这种括号匹配问题,一般都是使用栈;

先找到所有可以匹配的索引号,然后找出最长连续数列;

例如: s = )(()()), 可以使用栈找到:

位置2 和 位置3 匹配;

位置4 和 位置5 匹配;

位置1 和 位置6 匹配;

这个数组玮 2,3,4,5,1,6 ,这是通过栈找到的,按照递增序列排序,找出该数组的最长连续数列的长度就是最长有小括号长度:

所以复杂度来自于: O ( n l o g n ) O(nlogn) O(nlogn).

接下来思考: 怎么省略排序的过程,在弹栈的时候进行操作呢。

  • python实现: 时间复杂度: O ( n ) O(n) O(n);

    class Solution:
    def longestValidParentheses(self, s: str) -> int:
    if not s:
    return 0
    stack = [-1]
    res = 0
    for i in range(len(s)):
    if s[i] == '(':
    stack.append(i)
    else:
    # 这里思路最精彩:
    # l利用下标存储当前结果;
    # 通过栈将问题转化为 最大间隔的问题;
    # 预先设置为 -1, 如果出现先 ) 将 )作为参照物;
    stack.pop()
    if not stack:
    stack.append(i)
    else:
    res = max(res, i-stack[-1])
    return res

解题思路二:dp 方法-不会

数组

[54. 螺旋矩阵-中等]

[59. 螺旋矩阵 II-中等]

相关推荐
IC 见路不走18 分钟前
LeetCode 第75题:颜色分类
数据结构·算法·leetcode
Zephyrtoria4 小时前
区间合并:区间合并问题
java·开发语言·数据结构·算法
Hello eveybody7 小时前
C++介绍整数二分与实数二分
开发语言·数据结构·c++·算法
梦境虽美,却不长9 小时前
数据结构 学习 队列 2025年6月14日 11点22分
数据结构·学习·队列
GalaxyPokemon9 小时前
LeetCode - 704. 二分查找
数据结构·算法·leetcode
hy.z_77712 小时前
【数据结构】 优先级队列 —— 堆
数据结构
你的牧游哥12 小时前
前端面试题之将自定义数据结构转化成DOM元素
数据结构
float_六七12 小时前
Redis:极速缓存与数据结构存储揭秘
数据结构·redis·缓存
徐新帅13 小时前
基于 C 语言的图书管理系统开发详解
c语言·开发语言·数据结构
勇闯IT13 小时前
有多少小于当前数字的数字
java·数据结构·算法