矩阵知识补充

正交矩阵

定义: 正交矩阵是一种满足 A T A = E A^{T}A=E ATA=E的方阵

正交矩阵具有以下几个重要性质:

  • A的逆等于A的转置,即 A − 1 = A T A^{-1}=A^{T} A−1=AT
  • **A的行列式的绝对值等于1,即 ∣ d e t ( A ) ∣ = 1 |det(A)|=1 ∣det(A)∣=1
  • 正交矩阵的行向量和列向量都是单位正交向量组,也就是说,它们的长度都是 1,而且两两垂直
  • 正交矩阵的特征值都是模长为 1 的复数,即它们都在单位圆上。
  • 正交矩阵的乘积仍然是正交矩阵,即如果 A 和 B 都是正交矩阵,那么 AB 也是正交矩阵

eg:

0 1 0 1 0 0 0 0 1 \] \\begin{bmatrix} \& 0\& 1\& 0 \& \\\\ \&1\& 0\& 0 \& \\\\ \&0\& 0\& 1 \& \\end{bmatrix} 010100001 ### 对角矩阵 **定义:** 对角矩阵是一种特殊的方阵,它的非对角元素都为零,只有主对角线上的元素可能不为零 **性质:** -对角矩阵的逆矩阵等于主对角线上元素的倒数 eg: \[ 1 0 0 0 2 0 0 0 3 \] \\begin{bmatrix} \& 1\& 0\& 0 \& \\\\ \&0\& 2\& 0 \& \\\\ \&0\& 0\& 3 \& \\end{bmatrix} 100020003 ### 对称矩阵 **定义:** 特殊的方阵,它的**转置矩阵与自身相等** ,也就是说,它的元素以主对角线为对称轴对应相等 性质: * 对称矩阵的特征值都是实数 * 特征向量都是正交的 * 可以通过相似变换对角化 * 其逆矩阵也是对称矩阵 eg: \[ 1 2 3 2 2 5 3 5 3 \] \\begin{bmatrix} \& 1\& 2\& 3 \& \\\\ \&2\& 2\& 5 \& \\\\ \&3\& 5\& 3 \& \\end{bmatrix} 123225353 ### 正定矩阵 **定义:** 给定一个大小为 n × n n \\times n n×n的实对称矩阵A,对于任意长度为n的非零向量x,有 X T A x \> 0 X\^{T}Ax\>0 XTAx\>0恒成立,则矩阵A是一个正定矩阵 * 其逆矩阵也是对称矩阵 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727758908073709569/4bc7f4f8e5db4279367eee5dd377b3ce.webp) ### 不正定矩阵 定义: 给定一个大小为 n × n n \\times n n×n的实对称矩阵A,对于任意长度为n的非零向量x,有 X T A x ≥ 0 X\^{T}Ax \\ge 0 XTAx≥0恒成立,则矩阵A是一个半正定矩阵 ### 补充知识 #### 单位正交向量组 正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组 #### 求行列式的绝对值 ![在这里插入图片描述](https://file.jishuzhan.net/article/1727758908073709569/26b87668bfe056861b46cd78d5d21dda.webp)

相关推荐
醒过来摸鱼13 小时前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
醒过来摸鱼13 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
xier_ran21 小时前
Python 切片(Slicing)完全指南:从基础到多维矩阵
开发语言·python·矩阵
lijil16821 小时前
Hypermesh估算发动机缸体质量矩阵
线性代数·矩阵
FanXing_zl2 天前
快速掌握线性代数:核心概念与深度解析
线性代数·算法·机器学习
点云SLAM2 天前
四元数 (Quaternion)微分-四元数导数的矩阵表示推导(8)
线性代数·算法·计算机视觉·矩阵·机器人·slam·四元数
西西弗Sisyphus2 天前
四元数(Quaternion)、叉积(Cross Product)与点积(Dot Product)之间的关系
线性代数·机器学习·行列式·叉积·点积·四元数
YaraMemo2 天前
对称/Hermitian矩阵相关记号
线性代数·5g·矩阵·信息与通信
ChoSeitaku2 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
不穿格子的程序员3 天前
从零开始写算法——二分-搜索二维矩阵
线性代数·算法·leetcode·矩阵·二分查找