python中一个文件(A.py)怎么调用另一个文件(B.py)中定义的类AA详解和示例

本文主要讲解python文件中怎么调用另外一个py文件中定义的类,将通过代码和示例解读,帮助大家理解和使用。

目录

代码

B.py

如在文件B.py,定义了类别Bottleneck,其包含卷积层、正则化和激活函数层,主要对输入图像进行处理。但没有读取图像等代码。

python 复制代码
from torch import nn

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=3, s=2, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 2, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

A.py

文件A.py,在此部分,加载一幅图像并对其进行卷积处理。在代码中,没有卷积等层的定义,通过调用B.py中定义的类进行。

python 复制代码
import B
from PIL import Image
from torchvision import transforms
import math
if __name__ == '__main__':
    image = Image.open("../11111.jpg")
    transform = transforms.Compose([
        transforms.ToTensor()
    ])

    # 对图像应用转换操作
    input_image = transform(image)
    input_image = input_image.unsqueeze(0)
    CBR=B.Bottleneck(3,64)
    x=CBR(input_image )
    print(x.shape)

把上面代码保存到自己本地,再把图像路径换成的图像路径,运行得到打印机结果为:

调用过程

在上面A.py的代码中,先通过import B导入B.py文件,之后通过CBR=B.Bottleneck(3,64)关联和初始化定义的Bottleneck。最后使用x=CBR(input_image )进行使用即可。

注意,本文中用的示例是A.py和B.py在同一文件夹中,如不在同一文件夹需要添加路径。

相关推荐
CareyWYR2 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信4 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20094 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟4 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
小糖学代码4 小时前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播4 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训4 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent4 小时前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
懷淰メ5 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹5 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉