python中一个文件(A.py)怎么调用另一个文件(B.py)中定义的类AA详解和示例

本文主要讲解python文件中怎么调用另外一个py文件中定义的类,将通过代码和示例解读,帮助大家理解和使用。

目录

代码

B.py

如在文件B.py,定义了类别Bottleneck,其包含卷积层、正则化和激活函数层,主要对输入图像进行处理。但没有读取图像等代码。

python 复制代码
from torch import nn

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=3, s=2, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 2, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

A.py

文件A.py,在此部分,加载一幅图像并对其进行卷积处理。在代码中,没有卷积等层的定义,通过调用B.py中定义的类进行。

python 复制代码
import B
from PIL import Image
from torchvision import transforms
import math
if __name__ == '__main__':
    image = Image.open("../11111.jpg")
    transform = transforms.Compose([
        transforms.ToTensor()
    ])

    # 对图像应用转换操作
    input_image = transform(image)
    input_image = input_image.unsqueeze(0)
    CBR=B.Bottleneck(3,64)
    x=CBR(input_image )
    print(x.shape)

把上面代码保存到自己本地,再把图像路径换成的图像路径,运行得到打印机结果为:

调用过程

在上面A.py的代码中,先通过import B导入B.py文件,之后通过CBR=B.Bottleneck(3,64)关联和初始化定义的Bottleneck。最后使用x=CBR(input_image )进行使用即可。

注意,本文中用的示例是A.py和B.py在同一文件夹中,如不在同一文件夹需要添加路径。

相关推荐
好喜欢吃红柚子7 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python11 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯21 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠23 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
千天夜32 分钟前
使用UDP协议传输视频流!(分片、缓存)
python·网络协议·udp·视频流
Debroon33 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
测试界的酸菜鱼36 分钟前
Python 大数据展示屏实例
大数据·开发语言·python
羊小猪~~40 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨41 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin