基于OpenCV+MediaPipe的手势识别

【精选】【优秀课设】基于OpenCV+MediaPipe的手势识别(数字、石头剪刀布等手势识别)_石头剪刀布opencv识别代码_网易独家音乐人Mike Zhou的博客-CSDN博客

python 复制代码
import cv2
import mediapipe as mp
import math


def vector_2d_angle(v1, v2):
    '''
        求解二维向量的角度
    '''
    v1_x = v1[0]
    v1_y = v1[1]
    v2_x = v2[0]
    v2_y = v2[1]
    try:
        angle_ = math.degrees(math.acos(
            (v1_x * v2_x + v1_y * v2_y) / (((v1_x ** 2 + v1_y ** 2) ** 0.5) * ((v2_x ** 2 + v2_y ** 2) ** 0.5))))
    except:
        angle_ = 65535.
    if angle_ > 180.:
        angle_ = 65535.
    return angle_


def hand_angle(hand_):
    '''
        获取对应手相关向量的二维角度,根据角度确定手势
    '''
    angle_list = []
    # ---------------------------- thumb 大拇指角度
    angle_ = vector_2d_angle(
        ((int(hand_[0][0]) - int(hand_[2][0])), (int(hand_[0][1]) - int(hand_[2][1]))),
        ((int(hand_[3][0]) - int(hand_[4][0])), (int(hand_[3][1]) - int(hand_[4][1])))
    )
    angle_list.append(angle_)
    # ---------------------------- index 食指角度
    angle_ = vector_2d_angle(
        ((int(hand_[0][0]) - int(hand_[6][0])), (int(hand_[0][1]) - int(hand_[6][1]))),
        ((int(hand_[7][0]) - int(hand_[8][0])), (int(hand_[7][1]) - int(hand_[8][1])))
    )
    angle_list.append(angle_)
    # ---------------------------- middle 中指角度
    angle_ = vector_2d_angle(
        ((int(hand_[0][0]) - int(hand_[10][0])), (int(hand_[0][1]) - int(hand_[10][1]))),
        ((int(hand_[11][0]) - int(hand_[12][0])), (int(hand_[11][1]) - int(hand_[12][1])))
    )
    angle_list.append(angle_)
    # ---------------------------- ring 无名指角度
    angle_ = vector_2d_angle(
        ((int(hand_[0][0]) - int(hand_[14][0])), (int(hand_[0][1]) - int(hand_[14][1]))),
        ((int(hand_[15][0]) - int(hand_[16][0])), (int(hand_[15][1]) - int(hand_[16][1])))
    )
    angle_list.append(angle_)
    # ---------------------------- pink 小拇指角度
    angle_ = vector_2d_angle(
        ((int(hand_[0][0]) - int(hand_[18][0])), (int(hand_[0][1]) - int(hand_[18][1]))),
        ((int(hand_[19][0]) - int(hand_[20][0])), (int(hand_[19][1]) - int(hand_[20][1])))
    )
    angle_list.append(angle_)
    return angle_list


def h_gesture(angle_list):
    '''
        # 二维约束的方法定义手势
        # fist five gun love one six three thumbup yeah
    '''
    thr_angle = 65.  # 手指闭合则大于这个值(大拇指除外)
    thr_angle_thumb = 53.  # 大拇指闭合则大于这个值
    thr_angle_s = 49.  # 手指张开则小于这个值
    gesture_str = "Unknown"
    if 65535. not in angle_list:
        if (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "0"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "1"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "2"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] < thr_angle_s) and (angle_list[4] > thr_angle):
            gesture_str = "3"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):
            gesture_str = "4"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):
            gesture_str = "5"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):
            gesture_str = "6"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "8"

        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):
            gesture_str = "Pink Up"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] > thr_angle) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "Thumb Up"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "Fuck"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] > thr_angle) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] < thr_angle_s) and (angle_list[4] < thr_angle_s):
            gesture_str = "Princess"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] < thr_angle_s) and (
                angle_list[3] > thr_angle) and (angle_list[4] > thr_angle):
            gesture_str = "Bye"
        elif (angle_list[0] < thr_angle_s) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):
            gesture_str = "Spider-Man"
        elif (angle_list[0] > thr_angle_thumb) and (angle_list[1] < thr_angle_s) and (angle_list[2] > thr_angle) and (
                angle_list[3] > thr_angle) and (angle_list[4] < thr_angle_s):
            gesture_str = "Rock'n'Roll"

    return gesture_str


def detect():
    mp_drawing = mp.solutions.drawing_utils
    mp_hands = mp.solutions.hands
    hands = mp_hands.Hands(
        static_image_mode=False,
        max_num_hands=1,
        min_detection_confidence=0.75,
        min_tracking_confidence=0.75)
    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = cv2.flip(frame, 1)
        results = hands.process(frame)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        if results.multi_handedness:
            for hand_label in results.multi_handedness:
                hand_jugg = str(hand_label).split('"')[1]
                print(hand_jugg)
                cv2.putText(frame, hand_jugg, (50, 200), 0, 1.3, (0, 0, 255), 2)
        if results.multi_hand_landmarks:
            for hand_landmarks in results.multi_hand_landmarks:
                mp_drawing.draw_landmarks(frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)
                hand_local = []
                for i in range(21):
                    x = hand_landmarks.landmark[i].x * frame.shape[1]
                    y = hand_landmarks.landmark[i].y * frame.shape[0]
                    hand_local.append((x, y))
                if hand_local:
                    angle_list = hand_angle(hand_local)
                    gesture_str = h_gesture(angle_list)
                    print(gesture_str)
                    cv2.putText(frame, gesture_str, (50, 100), 0, 1.3, (0, 0, 255), 2)

        cv2.imshow('MediaPipe Hands', frame)
        if cv2.waitKey(1) & 0xFF == 27:
            break
    cap.release()
    cv2.destroyAllWindows()


if __name__ == '__main__':
    detect()

代码的解释请参考

【精选】【优秀课设】基于OpenCV+MediaPipe的手势识别(数字、石头剪刀布等手势识别)_石头剪刀布opencv识别代码_网易独家音乐人Mike Zhou的博客-CSDN博客

相关推荐
xiaohouzi11223318 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
荼蘼19 小时前
答题卡识别改分项目
人工智能·opencv·计算机视觉
张子夜 iiii21 小时前
4步OpenCV-----扫秒身份证号
人工智能·python·opencv·计算机视觉
潮汐退涨月冷风霜1 天前
数字图像处理(1)OpenCV C++ & Opencv Python显示图像和视频
c++·python·opencv
paid槮1 天前
机器视觉之图像处理篇
图像处理·opencv·计算机视觉
小王爱学人工智能1 天前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
山烛1 天前
OpenCV:图像透视变换
人工智能·opencv·计算机视觉·图像透视变换
星期天要睡觉2 天前
计算机视觉(opencv)实战二十一——基于 SIFT 和 FLANN 的指纹图像匹配与认证
人工智能·opencv·计算机视觉
星期天要睡觉2 天前
计算机视觉(opencv)实战十七——图像直方图均衡化
人工智能·opencv·计算机视觉
Monkey的自我迭代2 天前
SIFT特征匹配实战:KNN算法实现指纹认证
人工智能·opencv·计算机视觉