LeetCode //C - 198. House Robber

198. House Robber

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).

Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).

Total amount you can rob = 2 + 9 + 1 = 12.

Constraints:
  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

From: LeetCode

Link: 198. House Robber


Solution:

Ideas:
  • We handle base cases where the size of nums is 0 or 1.
  • We create an array dp to store the maximum amount that can be robbed up to each house.
  • The first element of dp is the amount in the first house, and the second element is the maximum of the first two houses.
  • For each subsequent house i, we calculate the maximum amount that can be robbed by comparing:
    • The amount robbed by robbing the current house i (which is nums[i] + dp[i - 2]) and not robbing the immediate previous house.
    • The amount robbed by not robbing the current house (which is dp[i - 1]).
  • Finally, we return the last element of the dp array, which represents the maximum amount that can be robbed from the entire street.
Code:
c 复制代码
int rob(int* nums, int numsSize) {
    if (numsSize == 0) return 0;
    if (numsSize == 1) return nums[0];

    int dp[numsSize];
    dp[0] = nums[0];
    dp[1] = nums[1] > nums[0] ? nums[1] : nums[0];

    for (int i = 2; i < numsSize; i++) {
        dp[i] = (nums[i] + dp[i - 2]) > dp[i - 1] ? nums[i] + dp[i - 2] : dp[i - 1];
    }

    return dp[numsSize - 1];
}
相关推荐
黄卷青灯778 分钟前
标定系数为什么会存储在相机模组里面,在标定的时候,算法是在割草机的X3板上运行的啊?
数码相机·算法·相机内参
螺丝钉的扭矩一瞬间产生高能蛋白25 分钟前
PID算法基础知识
算法
彷徨而立1 小时前
【C/C++】只知道窗口句柄,如何擦除窗口内容,清理窗口?
c语言·c++·windows
云知谷1 小时前
【经典书籍】C++ Primer 第14类虚函数与多态精华讲解
c语言·开发语言·c++·软件工程·团队开发
HVACoder1 小时前
复习下线性代数,使用向量平移拼接两段线
c++·线性代数·算法
爱coding的橙子1 小时前
每日算法刷题Day77:10.22:leetcode 二叉树bfs18道题,用时3h
算法·leetcode·职场和发展
Swift社区1 小时前
LeetCode 404:左叶子之和(Sum of Left Leaves)
算法·leetcode·职场和发展
南枝异客2 小时前
查找算法-顺序查找
python·算法
QuantumLeap丶2 小时前
《数据结构:从0到1》-06-单链表&双链表
数据结构·算法
傻童:CPU2 小时前
C语言需要掌握的基础知识点之递归
c语言·开发语言