LeetCode //C - 198. House Robber

198. House Robber

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).

Total amount you can rob = 1 + 3 = 4.

Example 2:

Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).

Total amount you can rob = 2 + 9 + 1 = 12.

Constraints:
  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

From: LeetCode

Link: 198. House Robber


Solution:

Ideas:
  • We handle base cases where the size of nums is 0 or 1.
  • We create an array dp to store the maximum amount that can be robbed up to each house.
  • The first element of dp is the amount in the first house, and the second element is the maximum of the first two houses.
  • For each subsequent house i, we calculate the maximum amount that can be robbed by comparing:
    • The amount robbed by robbing the current house i (which is nums[i] + dp[i - 2]) and not robbing the immediate previous house.
    • The amount robbed by not robbing the current house (which is dp[i - 1]).
  • Finally, we return the last element of the dp array, which represents the maximum amount that can be robbed from the entire street.
Code:
c 复制代码
int rob(int* nums, int numsSize) {
    if (numsSize == 0) return 0;
    if (numsSize == 1) return nums[0];

    int dp[numsSize];
    dp[0] = nums[0];
    dp[1] = nums[1] > nums[0] ? nums[1] : nums[0];

    for (int i = 2; i < numsSize; i++) {
        dp[i] = (nums[i] + dp[i - 2]) > dp[i - 1] ? nums[i] + dp[i - 2] : dp[i - 1];
    }

    return dp[numsSize - 1];
}
相关推荐
yaoh.wang9 小时前
力扣(LeetCode) 88: 合并两个有序数组 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
进阶的猪9 小时前
STM32 使用HAL库SPI读写FLASH(W25Q128JV)数据 Q&A
c语言·stm32·单片机
LYFlied10 小时前
【每日算法】 LeetCode 56. 合并区间
前端·算法·leetcode·面试·职场和发展
艾醒10 小时前
大模型原理剖析——多头潜在注意力 (MLA) 详解
算法
艾醒10 小时前
大模型原理剖析——DeepSeek-V3深度解析:671B参数MoE大模型的技术突破与实践
算法
charlie11451419111 小时前
现代C++嵌入式教程:C++98基础特性:从C到C++的演进(1)
c语言·开发语言·c++·笔记·学习·教程
jifengzhiling11 小时前
零极点对消:原理、作用与风险
人工智能·算法
鲨莎分不晴12 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
XFF不秃头12 小时前
力扣刷题笔记-全排列
c++·笔记·算法·leetcode