ubuntu22.04 pytorch gtx1080ti

Recently, I have updated my Ubuntu Operating System to version 22.04 and I find out that the installation of CUDA and Cudnn is much more simpler that earlier version. Therefore, I have decided to create this blog to help others setting up the environment easily.

Nvidia Drivers

Let's us start with Installation of Nvidia Driver. Basically this driver is installed when we update our Ubuntu Operation System. Basically we need to know which driver has been used by our Operating System. In Ubuntu 22.04, we can click the "show application" on the bottom left and type in "additional driver" to check for the Nvidia Driver that we are using.

additional driver

Nvidia Drivers

As we can see, there are multiple Nvidia drivers and I have selected Nvidia-driver-525 to use. To install for multiple drivers, we can run these commands.

复制代码
sudo apt update
sudo apt upgrade
sudo ubuntu-drivers autoinstall
reboot
nvidia-smi

Cuda Toolkits

Once we have chosen the Nvidia Driver (Nvidia-driver 525 for my case) suitable for us, we could start installing the Cuda toolkits.

复制代码
sudo apt update
sudo apt upgrade
sudo apt install nvidia-cuda-toolkit

After installing the toolkit, we need to know the supported CuDNN version for the installed Cuda toolkits. We could run the following command.

复制代码
nvcc --version 

this is the output :

Suitable CuDNN version

CuDNN

From the output, we get to know the installed Cuda toolkits is version 11.x. Therefore, the corresponding CuDNN is Local Installer for Ubuntu22.04 x86_64 (Deb). If we go the nvidia CuDNN website, we will notice that there are 2 versions of CuDNN for Cuda 12.x and Cuda 11.x. We could choose another version of CuDNN Local Installer for Ubuntu22.04 x86_64 (Deb) if the installed Cuda is 12.x.

List of CuDNN

Once we have downloaded the suitable CuDNN, we could run the following command to install the CuDNN.

复制代码
sudo dpkg -i cudnn-local-repo-ubuntu2204-8.9.3.28_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-8.9.3.28/cudnn-local-7F7A158C-keyring.gpg /usr/share/keyrings/ 

After the command finish running, we are done with the installation! Before we celebrate the success, let's us test the CUDA & CuDNN installation from virtual environment using torch library.

Virtual Environment

Installation of virtual environment can be done using the following scripts.

复制代码
sudo apt-get install python3-pip
sudo pip3 install virtualenv
virtualenv -p py3.10 venv
source venv/bin/activate

CUDA & CuDNN test : pytorch & tensorflow

Installation of pytorch library can be done using the following scripts.

复制代码
import torch
print(torch.cuda.is_available()) # should be True

in additional, we could test it using tensorflow.

复制代码
pip3 install tensorflow

This python script can be used to do the test.

复制代码
import tensorflow as tf
print("Num GPUs Available: ", tf.config.list_physical_devices('GPU') , len(tf.config.list_physical_devices('GPU')))

Once we see the following output, we can start celebrating by giving me a clap!!!

复制代码
Num GPUs Available:  [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] 1

Before leaving, I have a shameless promotion on my Udemy course : Practical Real-World SQL and Data Visualization. I have been working in the top travel platform company for years and I find that the free visualization tool, Metabase, is very useful. Therefore, I spend weekends creating the course and I wish you could benefit from the course. Lastly, I really appreciate if you could take a look on the course and even better, please help me to share the course with your friends just like I share the knowledge to you. Thank you!!!

相关推荐
夜幕龙10 分钟前
深度生成模型(二)——基本概念与数学建模
人工智能·深度学习·transformer
游王子15 分钟前
OpenCV(11):人脸检测、物体识别
人工智能·opencv·计算机视觉
山海青风16 分钟前
从零开始玩转TensorFlow:小明的机器学习故事 3
人工智能·机器学习·tensorflow
@心都17 分钟前
机器学习数学基础:35.效度
人工智能·机器学习
幻想趾于现实19 分钟前
傅里叶分析
人工智能
春末的南方城市26 分钟前
VidSketch:具有扩散控制的手绘草图驱动视频生成
人工智能·深度学习·计算机视觉·aigc
紫雾凌寒31 分钟前
计算机视觉 |解锁视频理解三剑客——TimeSformer
python·深度学习·神经网络·计算机视觉·transformer·timesformer
Toky丶34 分钟前
【文献阅读】A Survey on Model Compression for Large Language Models
人工智能·语言模型·自然语言处理
Williams101 小时前
解锁高效开发新姿势:Trae AI编辑器深度体验
人工智能·编辑器
Francek Chen1 小时前
【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能·深度学习·语言模型·大模型·aigc