人工智能-注意力机制之注意力汇聚:Nadaraya-Watson 核回归

查询(自主提示)和键(非自主提示)之间的交互形成了注意力汇聚; 注意力汇聚有选择地聚合了值(感官输入)以生成最终的输出。 本节将介绍注意力汇聚的更多细节, 以便从宏观上了解注意力机制在实践中的运作方式。 具体来说,1964年提出的Nadaraya-Watson核回归模型 是一个简单但完整的例子,可以用于演示具有注意力机制的机器学习。

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

生成数据集

在这里生成了50个训练样本和\(50\)个测试样本。 为了更好地可视化之后的注意力模式,需要将训练样本进行排序。

python 复制代码
n_train = 50  # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5)   # 排序后的训练样本

def f(x):
    return 2 * torch.sin(x) + x**0.8

y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,))  # 训练样本的输出
x_test = torch.arange(0, 5, 0.1)  # 测试样本
y_truth = f(x_test)  # 测试样本的真实输出
n_test = len(x_test)  # 测试样本数
n_test

下面的函数将绘制所有的训练样本(样本由圆圈表示), 不带噪声项的真实数据生成函数\(f\)(标记为"Truth"), 以及学习得到的预测函数(标记为"Pred")。

python 复制代码
def plot_kernel_reg(y_hat):
    d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],
             xlim=[0, 5], ylim=[-1, 5])
    d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);

平均汇聚

如下图所示,这个估计器确实不够聪明。 真实函数(f)("Truth")和预测函数("Pred")相差很大。

python 复制代码
y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)
相关推荐
曼城的天空是蓝色的11 小时前
GroupNet:基于多尺度神经网络的交互推理轨迹预测
深度学习·计算机视觉
koo36411 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
B站_计算机毕业设计之家11 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Francek Chen12 小时前
【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
人工智能·pytorch·深度学习·自然语言处理·glove
程序猿追13 小时前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
悠闲蜗牛�13 小时前
技术融合新纪元:深度学习、大数据与云原生的跨界实践
大数据·深度学习·云原生
程序猿追13 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构
antonytyler15 小时前
机器学习实践项目(二)- 房价预测增强篇 - 模型训练与评估:从多模型对比到小网格微调
人工智能·机器学习
嵌入式-老费17 小时前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰17 小时前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习