pytorch训练模板

来源:http://worthpen.top/#/home/blog?blog=pot-blog36.md

引言

本项目实现了基于PyTorch Lightning的神经网络训练和测试管道。项目除了实现PyTorch Lightning的工作流外,还实现了通过任务池在训练过程中添加任务、k折交叉验证、将训练结果保存在.cvs中、接受随机种子进行恢复训练、将模型转换为.onnx和.tflite。

项目地址: https://github.com/shenyan233/machine_learning_template

使用方法

环境配置

python version:3.7-3.10

bash 复制代码
pip install -r requirements.txt

cuda and torch need to be installed by itself. Recommendation:

bash 复制代码
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

配置网络架构和数据集

整个项目目录结构如下:

bash 复制代码
.
├── dataset
│   └── {dataset_name}
│        ├── test
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        ├── train
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        └── ...
├── network
│   └── {network_name}
│         ├── network.py
│         └── ...
└── ...

上述表示的文件或文件夹需要预先配置。省略号所代表的文件或文件夹保持默认即可。

数据集需要调整为自己的数据集,图像(*.png)名称为对应label.txt中的行号。您可以在此处自由调整数据集的保存格式,但Dataloder和其他类需要在'/dataset/{dataset name}/init.py'中重写。

network.py包含要训练的网络架构, 可以改为其他名称, 但是需要同步修改__init__.py。

任务流的配置参数保存在tasks.json中。

设置训练参数

在./network/{network_name}/config.json中设置参数,参数包括model_name、dataset_path、stage、max_epoch、batch_size等。训练参数包括可选参数和必选参数, 具体内容可浏览main.py内的注释。参数stage为'fit'或'test',分别表示处于训练阶段或测试阶段。

开始训练或测试

在终端或cmd内执行:

python3 main.py

相关推荐
DREAM依旧7 分钟前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
ROBOT玲玉11 分钟前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
GocNeverGiveUp20 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
Kai HVZ1 小时前
python爬虫----爬取视频实战
爬虫·python·音视频
古希腊掌管学习的神1 小时前
[LeetCode-Python版]相向双指针——611. 有效三角形的个数
开发语言·python·leetcode
m0_748244831 小时前
StarRocks 排查单副本表
大数据·数据库·python
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
路人甲ing..1 小时前
jupyter切换内核方法配置问题总结
chrome·python·jupyter
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn