pytorch训练模板

来源:http://worthpen.top/#/home/blog?blog=pot-blog36.md

引言

本项目实现了基于PyTorch Lightning的神经网络训练和测试管道。项目除了实现PyTorch Lightning的工作流外,还实现了通过任务池在训练过程中添加任务、k折交叉验证、将训练结果保存在.cvs中、接受随机种子进行恢复训练、将模型转换为.onnx和.tflite。

项目地址: https://github.com/shenyan233/machine_learning_template

使用方法

环境配置

python version:3.7-3.10

bash 复制代码
pip install -r requirements.txt

cuda and torch need to be installed by itself. Recommendation:

bash 复制代码
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

配置网络架构和数据集

整个项目目录结构如下:

bash 复制代码
.
├── dataset
│   └── {dataset_name}
│        ├── test
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        ├── train
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        └── ...
├── network
│   └── {network_name}
│         ├── network.py
│         └── ...
└── ...

上述表示的文件或文件夹需要预先配置。省略号所代表的文件或文件夹保持默认即可。

数据集需要调整为自己的数据集,图像(*.png)名称为对应label.txt中的行号。您可以在此处自由调整数据集的保存格式,但Dataloder和其他类需要在'/dataset/{dataset name}/init.py'中重写。

network.py包含要训练的网络架构, 可以改为其他名称, 但是需要同步修改__init__.py。

任务流的配置参数保存在tasks.json中。

设置训练参数

在./network/{network_name}/config.json中设置参数,参数包括model_name、dataset_path、stage、max_epoch、batch_size等。训练参数包括可选参数和必选参数, 具体内容可浏览main.py内的注释。参数stage为'fit'或'test',分别表示处于训练阶段或测试阶段。

开始训练或测试

在终端或cmd内执行:

python3 main.py

相关推荐
CV学术叫叫兽4 分钟前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
湫ccc13 分钟前
《Python基础》之pip换国内镜像源
开发语言·python·pip
hakesashou15 分钟前
Python中常用的函数介绍
java·网络·python
菜鸟的人工智能之路25 分钟前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗
菜鸟学Python26 分钟前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
小白不太白95027 分钟前
设计模式之 责任链模式
python·设计模式·责任链模式
WeeJot嵌入式31 分钟前
卷积神经网络:深度学习中的图像识别利器
人工智能
喜欢猪猪33 分钟前
Django:从入门到精通
后端·python·django
糖豆豆今天也要努力鸭38 分钟前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡40 分钟前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3