pytorch训练模板

来源:http://worthpen.top/#/home/blog?blog=pot-blog36.md

引言

本项目实现了基于PyTorch Lightning的神经网络训练和测试管道。项目除了实现PyTorch Lightning的工作流外,还实现了通过任务池在训练过程中添加任务、k折交叉验证、将训练结果保存在.cvs中、接受随机种子进行恢复训练、将模型转换为.onnx和.tflite。

项目地址: https://github.com/shenyan233/machine_learning_template

使用方法

环境配置

python version:3.7-3.10

bash 复制代码
pip install -r requirements.txt

cuda and torch need to be installed by itself. Recommendation:

bash 复制代码
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

配置网络架构和数据集

整个项目目录结构如下:

bash 复制代码
.
├── dataset
│   └── {dataset_name}
│        ├── test
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        ├── train
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        └── ...
├── network
│   └── {network_name}
│         ├── network.py
│         └── ...
└── ...

上述表示的文件或文件夹需要预先配置。省略号所代表的文件或文件夹保持默认即可。

数据集需要调整为自己的数据集,图像(*.png)名称为对应label.txt中的行号。您可以在此处自由调整数据集的保存格式,但Dataloder和其他类需要在'/dataset/{dataset name}/init.py'中重写。

network.py包含要训练的网络架构, 可以改为其他名称, 但是需要同步修改__init__.py。

任务流的配置参数保存在tasks.json中。

设置训练参数

在./network/{network_name}/config.json中设置参数,参数包括model_name、dataset_path、stage、max_epoch、batch_size等。训练参数包括可选参数和必选参数, 具体内容可浏览main.py内的注释。参数stage为'fit'或'test',分别表示处于训练阶段或测试阶段。

开始训练或测试

在终端或cmd内执行:

python3 main.py

相关推荐
神码小Z4 分钟前
Midjourney-V7:支持参考图片头像或背景生成新保真图
人工智能·ai绘画
Francek Chen31 分钟前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制
犬余41 分钟前
模型上下文协议(MCP):AI的“万能插座”
人工智能·mcp
忧陌6061 小时前
Day22打卡-复习
python
芯盾时代1 小时前
数据出境的安全合规思考
大数据·人工智能·安全·网络安全·信息与通信
Sylvan Ding2 小时前
PyTorch Lightning实战 - 训练 MNIST 数据集
人工智能·pytorch·python·lightning
大白技术控2 小时前
浙江大学 deepseek 公开课 第三季 第3期 - 陈喜群 教授 (附PPT下载) by 突破信息差
人工智能·互联网·deepseek·deepseek公开课·浙大deepseek公开课课件·deepseek公开课ppt·人工智能大模型
Silence4Allen2 小时前
大模型微调指南之 LLaMA-Factory 篇:一键启动LLaMA系列模型高效微调
人工智能·大模型·微调·llama-factory
江鸟19982 小时前
AI日报 · 2025年05月11日|传闻 OpenAI 考虑推出 ChatGPT “永久”订阅模式
人工智能·gpt·ai·chatgpt·github