pytorch训练模板

来源:http://worthpen.top/#/home/blog?blog=pot-blog36.md

引言

本项目实现了基于PyTorch Lightning的神经网络训练和测试管道。项目除了实现PyTorch Lightning的工作流外,还实现了通过任务池在训练过程中添加任务、k折交叉验证、将训练结果保存在.cvs中、接受随机种子进行恢复训练、将模型转换为.onnx和.tflite。

项目地址: https://github.com/shenyan233/machine_learning_template

使用方法

环境配置

python version:3.7-3.10

bash 复制代码
pip install -r requirements.txt

cuda and torch need to be installed by itself. Recommendation:

bash 复制代码
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

配置网络架构和数据集

整个项目目录结构如下:

bash 复制代码
.
├── dataset
│   └── {dataset_name}
│        ├── test
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        ├── train
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        └── ...
├── network
│   └── {network_name}
│         ├── network.py
│         └── ...
└── ...

上述表示的文件或文件夹需要预先配置。省略号所代表的文件或文件夹保持默认即可。

数据集需要调整为自己的数据集,图像(*.png)名称为对应label.txt中的行号。您可以在此处自由调整数据集的保存格式,但Dataloder和其他类需要在'/dataset/{dataset name}/init.py'中重写。

network.py包含要训练的网络架构, 可以改为其他名称, 但是需要同步修改__init__.py。

任务流的配置参数保存在tasks.json中。

设置训练参数

在./network/{network_name}/config.json中设置参数,参数包括model_name、dataset_path、stage、max_epoch、batch_size等。训练参数包括可选参数和必选参数, 具体内容可浏览main.py内的注释。参数stage为'fit'或'test',分别表示处于训练阶段或测试阶段。

开始训练或测试

在终端或cmd内执行:

python3 main.py

相关推荐
chao_7892 分钟前
更灵活方便的初始化、清除方法——fixture【pytest】
服务器·自动化测试·python·pytest
lucky_lyovo4 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn8 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy12 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
心情好的小球藻32 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥33 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
静心问道35 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域37 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶39 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域39 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源