pytorch训练模板

来源:http://worthpen.top/#/home/blog?blog=pot-blog36.md

引言

本项目实现了基于PyTorch Lightning的神经网络训练和测试管道。项目除了实现PyTorch Lightning的工作流外,还实现了通过任务池在训练过程中添加任务、k折交叉验证、将训练结果保存在.cvs中、接受随机种子进行恢复训练、将模型转换为.onnx和.tflite。

项目地址: https://github.com/shenyan233/machine_learning_template

使用方法

环境配置

python version:3.7-3.10

bash 复制代码
pip install -r requirements.txt

cuda and torch need to be installed by itself. Recommendation:

bash 复制代码
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113

配置网络架构和数据集

整个项目目录结构如下:

bash 复制代码
.
├── dataset
│   └── {dataset_name}
│        ├── test
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        ├── train
│        │   ├── image
│        │   │   └── *.png
│        │   └── label.txt
│        └── ...
├── network
│   └── {network_name}
│         ├── network.py
│         └── ...
└── ...

上述表示的文件或文件夹需要预先配置。省略号所代表的文件或文件夹保持默认即可。

数据集需要调整为自己的数据集,图像(*.png)名称为对应label.txt中的行号。您可以在此处自由调整数据集的保存格式,但Dataloder和其他类需要在'/dataset/{dataset name}/init.py'中重写。

network.py包含要训练的网络架构, 可以改为其他名称, 但是需要同步修改__init__.py。

任务流的配置参数保存在tasks.json中。

设置训练参数

在./network/{network_name}/config.json中设置参数,参数包括model_name、dataset_path、stage、max_epoch、batch_size等。训练参数包括可选参数和必选参数, 具体内容可浏览main.py内的注释。参数stage为'fit'或'test',分别表示处于训练阶段或测试阶段。

开始训练或测试

在终端或cmd内执行:

python3 main.py

相关推荐
后台开发者Ethan1 分钟前
Python需要了解的一些知识
开发语言·人工智能·python
北京_宏哥10 分钟前
Python零基础从入门到精通详细教程11 - python数据类型之数字(Number)-浮点型(float)详解
前端·python·面试
猫头虎20 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农37 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农38 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机39 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶39 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8241 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫2 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域2 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序