OpenCV检测圆形东西是否存在缺口?

文章目录


前言

想了挺久,一直没解决这个问题。后面勉强解决了。


一、试过的方法

1.想用圆度来解决,后来发现圆度差值很小,完整的圆圆度0.89,然后有缺角的圆圆度0.88。

2.想用面积来解决,但是图片中每个圆大小不是一致的,是有一些差别的,也没办法。

3.多边形拟合、凸包都不合适。

4.想使用角点的数量来确定,发现也是不行。看下图

二、最终使用的方法

1.先极坐标变换

代码如下(示例):

python 复制代码
import cv2
import os

# 设置文件夹路径
folder_path = r"E:\VSCODE_PY\CAPCode\Posong\cap_2"

# 遍历文件夹中的图像文件
for file_name in os.listdir(folder_path):
    if file_name.endswith(".jpg"):
        # 读取图像并转换为灰度图像
        image_path = os.path.join(folder_path, file_name)
        image = cv2.imread(image_path)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # 进行极坐标变换
        polar_image = cv2.linearPolar(gray, (gray.shape[1]//2, gray.shape[0]//2), gray.shape[1]//2+10, cv2.WARP_FILL_OUTLIERS)

        # 进行边缘检测
        edges = cv2.Canny(polar_image, 50, 150)

        # 保存处理后的图像
        output_path = os.path.join(folder_path, "polar_" + file_name)
        cv2.imwrite(output_path, polar_image)

极坐标的中心点可以根据实际情况设置一下。

2.计算斜率

代码如下(示例):

python 复制代码
import os
import cv2
import numpy as np

# 设置最小间距阈值
min_distance = 10

# 遍历cap_8文件夹内的所有图片
for filename in os.listdir(r'E:\VSCODE_PY\CAPCode\Posong\cap_8'):
    if filename.endswith('.jpg'):
        # 读取图像并进行灰度化处理
        image = cv2.imread(os.path.join(r'E:\VSCODE_PY\CAPCode\Posong\cap_8', filename))
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # 进行边缘检测
        edges = cv2.Canny(gray, 50, 150)

        # 查找轮廓
        contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        # 创建一个空白图像,用于绘制轮廓
        contour_image = np.zeros_like(image)

        # 绘制轮廓
        cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)

        # 查找角点
        corners = cv2.cornerHarris(gray, 2, 3, 0.04)

        # 标记角点
        threshold = 0.45 * corners.max()  # 调整阈值
        corners = cv2.dilate(corners, None)
        image[corners > threshold] = [0, 0, 255]

        # 计算任意两个角点之间的斜率
        corner_points = np.argwhere(corners > threshold)
        slopes = []
        for i in range(len(corner_points)):
            for j in range(i+1, len(corner_points)):
                x1, y1 = corner_points[i]
                x2, y2 = corner_points[j]
                distance = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                if distance >= min_distance:
                    if x2 - x1 == 0:
                        slope = float('inf')
                    else:
                        slope = (y2 - y1) / (x2 - x1)
                    slopes.append(slope)

        # 处理无穷大和无穷小的情况
        slopes = [slope for slope in slopes if slope != float('inf') and slope != float('-inf')]
        slopes.sort()

        # 输出最大斜率和最小斜率的绝对值
        if len(slopes) >= 2:
            max_slope = max(abs(slopes[-2]), abs(slopes[1]))
            min_slope = min(abs(slopes[-2]), abs(slopes[1]))
        else:
            max_slope = float('-inf')
            min_slope = float('inf')

        print("图片{}的最大斜率的绝对值:".format(filename), max_slope)
        print("图片{}的最小斜率的绝对值:".format(filename), min_slope)

        # 显示结果
        cv2.imshow('Contours with Corners', image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

角点稍微多,要先设置一下任意2个角点的斜率必须大于最小间距。

这样可以求出每一张图片的斜率绝对值最大和最小值,即看下凸起部分是不是影响到了曲线的斜率。


总结

完成。

相关推荐
007tg2 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报2 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe993 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………4 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房4 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck4 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭6 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库6 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo6 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论