Opencv | 直方图均衡化

python 复制代码
import cv2 #opencv 读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt #Matplotlib是RGB
%matplotlib inline
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为uint8 或 float32。当传入函数时应用中括号[]括来例如[img]

  • channels: 如果灰度图它的值就是[0],如果是彩色图像的传入的参数可以是[0][1][2],它们分别对应着BGR。

  • mask: 掩模图像。统整幅图像的直方图就把它为None。但是如果你想统图像某一分的直方图的你就制作一个掩模图像并使用它。

  • histSize: BIN 的数目。也应用中括号括来

  • ranges: 像素值范围常为[0256]

cat.jpg

python 复制代码
img = cv2.imread('cat.jpg',0)#0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
python 复制代码
plt.hist(img.ravel(),256);
plt.show()

可视化运行结果:

直方图均衡化:

python 复制代码
equ = cv2.equalizeHist(img)
plt.hist(equ.ravel(),256)
plt.show()
python 复制代码
res = np.hstack((img,equ))
cv_show(res,'res')

运行结果:

自适应直方图均衡化:

python 复制代码
clahe = cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))
python 复制代码
res_clahe = clahe.apply(img)
res = np.hstack((img,equ, res_clahe))
cv_show(res,'res')

运行结果:

相关推荐
梁下轻语的秋缘几秒前
前馈神经网络回归(ANN Regression)从原理到实战
人工智能·神经网络·回归
zhqh10010 分钟前
Opencv C++写中文(来自Gemini)
opencv
xu_wenming11 分钟前
华为Watch的ECG功能技术分析
人工智能·嵌入式硬件·算法
不吃香菜葱的程序猿22 分钟前
《Adversarial Sticker: A Stealthy Attack Method in the Physical World》论文分享(侵删)
深度学习·计算机视觉
meisongqing23 分钟前
【软件工程】机器学习多缺陷定位技术分析
人工智能·机器学习·软件工程·缺陷定位
高工智能汽车30 分钟前
大模型浪潮下,黑芝麻智能高性能芯片助力汽车辅助驾驶变革
人工智能·汽车
带娃的IT创业者37 分钟前
《AI大模型应知应会100篇》第62篇:TypeChat——类型安全的大模型编程框架
人工智能·安全
程序媛晓晓38 分钟前
视觉论文常用图形----雷达图
计算机视觉
补三补四44 分钟前
随机森林(Random Forest)
人工智能·科技·算法·随机森林·机器学习
dundunmm1 小时前
【每天一个知识点】Dip 检验(Dip test)
人工智能·机器学习