Opencv | 直方图均衡化

python 复制代码
import cv2 #opencv 读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt #Matplotlib是RGB
%matplotlib inline
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

cv2.calcHist(images,channels,mask,histSize,ranges)

  • images: 原图像图像格式为uint8 或 float32。当传入函数时应用中括号[]括来例如[img]

  • channels: 如果灰度图它的值就是[0],如果是彩色图像的传入的参数可以是[0][1][2],它们分别对应着BGR。

  • mask: 掩模图像。统整幅图像的直方图就把它为None。但是如果你想统图像某一分的直方图的你就制作一个掩模图像并使用它。

  • histSize: BIN 的数目。也应用中括号括来

  • ranges: 像素值范围常为[0256]

cat.jpg

python 复制代码
img = cv2.imread('cat.jpg',0)#0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
python 复制代码
plt.hist(img.ravel(),256);
plt.show()

可视化运行结果:

直方图均衡化:

python 复制代码
equ = cv2.equalizeHist(img)
plt.hist(equ.ravel(),256)
plt.show()
python 复制代码
res = np.hstack((img,equ))
cv_show(res,'res')

运行结果:

自适应直方图均衡化:

python 复制代码
clahe = cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))
python 复制代码
res_clahe = clahe.apply(img)
res = np.hstack((img,equ, res_clahe))
cv_show(res,'res')

运行结果:

相关推荐
Shawn_Shawn4 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like6 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a6 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者7 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗7 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_8 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信8 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235868 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs8 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习